• Title/Summary/Keyword: caspase 3, 9

Search Result 601, Processing Time 0.029 seconds

The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats

  • Erdogan, Hakan;Tuncdemir, Matem;Kelten, Bilal;Akdemir, Osman;Karaoglan, Alper;Tasdemiroglu, Erol
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.6
    • /
    • pp.445-454
    • /
    • 2015
  • Objective : In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods : Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results : In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion : We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 apoptosis 유발에 미치는 삼기보배탕의 영향)

  • Heo, Man-Kyu;Heo, Tae-Yool;Kim, Ki-Tak;Byun, Mi-Kwon;Kim, Jin-Young;Sim, Sung-Heum;Kim, Koang-Lock;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.473-491
    • /
    • 2007
  • Objectives : This study was designed to investigate the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines Methods : In this study, we measured the subsistence, form of NCI-H460 and A549 non-small-cell lung cancer cell by hemocytometer and DAPI staining. In each cell, we analyzed DNA fragmentation. reverse transcription-polymerase chain reaction and measured activity of caspase-3, caspase-8 and caspase-9. Results and Conclusions : We found that exposure of A549 cells to SGBPT resulted in growth inhibition in a dose-dependent manner. butSGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes. SGBPT treatment partially induced the expression of DR5 cells and the expression of Faswas markedly increased in both transcriptional and translational levels in A549 cells. SGBPT treatment partially induced the expression of Bcl-2, Bcl-XL and the expression of Bid was markedly decreased in translational levels in A549 cells. However, SGBPT treatment did not affect the expression of IAP family in A549 orNCI-H460 cells. SGBPT treatment partially induced the expression of caspase-3, caspase-8, caspase-9 activity which markedly increased in a dose-dependent manners in A549 cells. The fragmental development of PARP and ${\beta}$-catenin protein was observed in A549 cells by SGBPT treatment. SGBPT treatment induced the expression of PLC-${\gamma}1$ protein which decreased in A549 cells. SGBPT treatment partially induced the expression of DFF45/ICAD which markedly increased in a dose-dependent manner in A549 cells. Taken together. these findings suggested that SGBPT-induced inhibition of human lung carcinoma did not affect NCI-H460 cell growth. However, SGBPT-induced inhibition of human lung carcinoma A549 cell growth was associated with the induction of death receptor and mitochondrial pathway. The results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

  • PDF

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Neuroprotective Effects of Kaempferol, Quercetin, and Its Glycosides by Regulation of Apoptosis (Kaempferol, quercetin 및 그 배당체들의 apoptosis 조절을 통한 신경세포 보호 효과)

  • Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.286-293
    • /
    • 2019
  • Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta ($A{\beta}$) in the brain. In the present study, we investigated the neuroprotective effects of four flavonoids such as kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-${\beta}$-D-glucoside against neuronal apoptosis induced by $A{\beta}$ in SH-SY5Y neuronal cells. Treatment with $A{\beta}$ decreased cell viability compared to the non-treated normal group. However, treatment with the four flavonoids increased cell viability in SH-SY5Y cells treated with $A{\beta}$. In addition, we measured the expression of apoptosis-related proteins such as Bcl-2-associated X protein (Bax) and cleaved caspase-9. Treatment with the four flavonoids down-regulated Bax and cleaved caspase-9 in $A{\beta}$-treated SH-SY5Y neuronal cells. Overall, the results of the present study demonstrated the neuroprotective effect of flavonoids by anti-apoptotic activity in $A{\beta}$-induced SH-SY5Y neuronal cells. These results suggest that these four flavonoids would be useful therapeutic and prevention agents for AD.

BCL2L10 Protein Induces Apoptosis in KGN-Human Granulosa Cells (KGN(난소과립세포)에서 BCL2L10 단백질의 세포사멸 유도 기능 연구)

  • Kim, Jae-Hong;Lee, Kyung-Ah;Bae, Jee-Hyeon
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • BCL-2 family essential proteins to play a pivotal role to perform in apoptosis signaling pathways and essential proteins for the regulation of cell death. BCL2L10 protein is a member of BCL-2 family and it regulates both anti-apoptotic and pro-apoptotic function of specific tissue or cell line. BCL2L10 of function and expression is not reported in ovary cell lines. In this study we reported that BCL2L10 were significant expression of KGN cell line. Ectopic expression of BCL2L10 induced cell death, and its cells killing effect was blocked by pan-caspase inhibitor of the Z-VAD-fmk. Ectopic expression of BCL2L10 protein led to the activation of caspase 9 and caspase 3, suggesting apoptotic cell death, and confocal microscopic analyses showed that BCL2L10 was partially localized in mitochondria. Thus, we provide a novel function of BCL2L10 in KGN cells, which was involved in the intrinsic cell death pathway.

Cytochrome C Release and Caspase Activation Induced by 3-Deazaadenosisne is Inhibited by Bcl-2

  • Lee Yong-Joon;Choi Mi-Hyun;Lee Jung-Hee;Kim Ho-Shik;Lee Jeong-Hwa
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • Deazaadenosine analogs such as 3-deazaadenosine (DZA), 3-deazaaristeromycin (DZAri) and ara-3-deazaadenine (DZAra-A) were developed as inhibitors of S-adenosylhomocysteine (Ado-Hcy) hydrolase (EC 3.3.1.1). These analogs were reported to induce apoptosis in human and murine leukemic cells. But, the mechanism involved in this apoptosis was not clarified yet. In the present study, we analyze the apoptosis induced by deazaadenosine analogs in human cervival cancer cell line, HeLa and the effect of Bcl-2 on this apoptosis. Whereas neither DZAri nor DZAra-A showed inhibitory effect on HeLa cell growth, DZA induced apoptosis in HeLa cells accompanied by cytochrome c release and activation of various caspases such as caspase-2,-8,-9 and -3. In HeLa-bcl-2 cell line, a stable transfectant of HeLa cell to overexpress Bcl-2, cytochrome c release, activation of all these caspases and the resulted apoptosis by DZA were completely prevented. By in vitro assay of cytochrome c release, in addition, DZA induced cytochrome c release from purified mitochondria of HeLa-pcDNA3 cells, but not HeLa-bcl-2 cells, even in the absence of cytosolic fraction. Therefore, it can be suggested that DZA might damage directly mitochondria leading to activate intrinsic pathway of caspase and thus induce apoptosis. DZA-induced apoptosis in HeLa cells may be in a bcl-2-inhibitable manner and irrelative of Ado-Hcy hydrolase.

  • PDF

N-Butanol Extract of Capparis spinosa L. Induces Apoptosis Primarily Through a Mitochondrial Pathway Involving mPTP Open, Cytochrome C Release and Caspase Activation

  • Ji, Yu-Bin;Yu, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9153-9157
    • /
    • 2014
  • Background: Capparis spinosa L., a Uygur medicine, had been shown to have anti-tumor activity in our early experiments with an N-butanol extract (CSBE) as its active fraction. However, the mechanisms responsible for its effects are not clearly understood. Here, we report that treatment of SGC-7901 cells with CSBE resulted in dose-dependent reduction of cell viability and induction of apoptosis. Materials and Methods: To observe the inhibitory and killing effects of CSBE on SGC-7901, the SRB method was adopted, apoptosis being observed by electron microscopy. To clarify the mechanisms of apoptosis, Western blot and enzyme-labeled methods were used to examine the release of cytochrome c (Cyt c) and the activation of the caspase cascade. Results: By electron microscopy, apoptotic morphologic changes were detectable after CSBE administration. In this study, it was also demonstrated that CSBE induced apoptosis in SGC-7901 cells by inhibiting mPTP open, mitochondrial cytochrome c release, caspase-9 and caspase-3 activation. Conclusions: The findings indicated that CSBE induces aap optosis through mitochondrial pathway.

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.