• Title/Summary/Keyword: casing method

Search Result 173, Processing Time 0.021 seconds

An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation (수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용)

  • 전완호;이덕주
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

A numerical study on the acoustic characteristics of splitter type centrifugal impeller (스플리터형 원심형 임펠러의 소음 특성에 대한 연구)

  • Jeon, Wan-Ho;Chung, Phil-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.113-118
    • /
    • 2000
  • Centrifugal pump are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal pump noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal pump, and to calculate the effects of small vanes that are attached in original impeller-splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal pump and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller is good for acoustic characteristics.

  • PDF

Device Development for Longshore Current Measurement and Model Test (연안류 추적 장치 개발 및 모형 실험)

  • Lee, Chung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1801-1805
    • /
    • 2014
  • Longshore current is main transportation mean causing movement of bed load and suspended particle in coastal waters, and effective measurement method and suitable equipment for shallow water coastal environment where is frequently exposed to atmosphere. Measurement equipment for longshore drift was designed and miniature model was applied to Gyeongpo beach in May and June, 2014. The equipment consists of three main elements, spheroid outer casing, spheroid inner casing, observation module equipped with GPS. Gyroscope principle was applied to observation module, and GPS receiver always can be directed upwards. Miniature models were installed along Gyeonpo beach, and it was well to track the flow of longshore current. This research described the design and function of the equipment and results of field experiments.

A Study on the Shaft End Displacement of the Centrifugal Pump under Nozzle Loads using Compliance Coefficients (컴플라이언스 계수에 의한 노즐하중 하에서의 원심펌프의 축단변위에 관한 연구)

  • 최복록;박진무;김광은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.233-239
    • /
    • 2000
  • Investigation results are presented fur the shaft end displacements due to the elastic deformation of the casing and support in double suction centrifugal pump. Suction and discharge nozzles of the pump are subject to external piping loads and, in API 610, maximum values of their components are specified. This means that each nozzle can be subject to various combinations of loading conditions. Considering upper and lower criteria of each load, we must perform for the 4,096 load cases, and assign the direction and range of the loads. So, this paper develops an efficient procedure(Compliance Coefficient Method) to calculate the shaft end displacements(@ coupling) to determine whether satisfying the pump's standard. Also, we analyzed the effects of the casing and support thickness on shaft end displacements.

  • PDF

Three-dimensional analysis of the flow through an axial-flow fan (축류송풍기의 삼차원 유동장 해석)

  • Kim, Gwang-Yong;Kim, Jeong-Yeop;Jeong, Deok-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

Study on Difference of Characteristics between Backward and Forward Blades in Centrifugal Blower (원심형 송풍기에 있어서 전향익과 후향익의 특성 차이에 관한 연구)

  • Kim J. W.;Park J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.165-170
    • /
    • 2003
  • Centrifugal blowers are widely used for air handling units in industry applications. The blower has a centrifugal impeller and a scroll casing including a driving component such as an electric motor. The impeller takes forward or backward blades to induce flows into the blower. Comprehensive investigation according to the two kinds of blades is systematically carried out for a guidance of design. It is observed that flow rate of the blower with forward blades is larger than that of the system with backward blades. The reason is due to larger velocity from the rotating forward blades and the tendency is validated by a parallel experiment with a wind tunnel. Numerical analysis for the system shows detail information inside the blades and the casing. A series of figures to show the flow details offers deep understanding of a centrifugal blower with different blades.

  • PDF

Design Optimization of Two-Way Pump Casing through Flow Analysis (양방향 펌프의 유동 해석을 통한 펌프 케이싱의 최적설계)

  • Kim, Dong-Hwi;Noh, Yoojeong;Lim, O-Kaung;Choi, Eun-Ho;Choi, Ju Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • A two-way pump can reduce costs by draining and circulating water out and into the drum of the washing machine using a single motor whereas a conventional one-way pump uses two motors for doing the same function. However, when the water is drained through the drainage outlet in the two-way pump casing, a backward or inhalation flow occurs and the water flows to the circulation outlet. Likewise, when the water is circulated, the backward flow or inhalation makes the water flow to the drainage outlet. In this study, design optimization of the two-way pump casing is performed to maximize its performance while improving backward flow and inhalation occurring inside of the pump casing. For this, design variables of the pump casing that mainly affect the performance of the pump such as flow rate and torque of the motor were selected through the analysis of mean. Using response surface models for the performances, the ratio of the flow rate to the torque was maximized with satisfying the constraints for the back flow and inhalation through design optimization.

Abnormal Vibration of Turbine Control Valve due to Resonance (공진에 의한 터빈 Control Valve 이상 진동)

  • Koo, Jae-Raeyang;Kim, Sung-Hwi;Koo, Woo-Sik;Lee, Woo-Kwang;Kim, Yeon-Hwan;Hwang, Jae-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2100-2104
    • /
    • 2004
  • Amount of Electricity which product generator decide control valve at Turbine. Operating method of Control valve have two mode. First operating method is Partial Arc Admission, and second operating method is Full Arc Admission. Failure of Control Valve have on serious damage electricity lineage. In this Paper, We have investigated resonance that Control Valve spring casing.

  • PDF

Study on Optimal Design and Analysis of Worm Gear and Casing of 5 Ton Class Worm Gear Reducer (5톤급 웜기어 감속기의 워엄기어와 케이싱의 최적설계 및 해석에 관한 연구)

  • Cho, Seong Hyun;Jeon, Chang Min;Qin, Zheon;Kim, Dongseon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.15-21
    • /
    • 2019
  • The worm reducer is capable of quadrature power transmission when the shafts are disposed at right angles to each other. Since a large reduction ratio can be obtained of up to approximately 1/100 and a sliding movement is performed during operation compared with other gears, the noise and vibration are small, and there is the advantage that reverse rotation can be prevented. On the other hand, severe wear and damage are displayed on the gear and worm tooth surface, and many defects, such as intense heat generation of the reducer, occur. In the reducer case, the four-piece casing method was selected to solve the problems of heat generation, transmission efficiency, and assemblability. In this paper, we analyzed the problems of the worm and worm wheel (the core parts of a 5-Ton worm reducer) and casing through these methods and researched how to solve them.

An Analysis of the Flow Field and Radiation Acoustic Field of a Centrifugal Impeller with Wedge(I) -An Analysis of the Flow Field and Aeroacoustic Source- (웨지가 있는 원심 임펠러의 유동 및 방사 음향장 해석(I) -유동장 및 소음원 해석-)

  • Lee, Deok-Ju;Jeon, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1157-1164
    • /
    • 2001
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few research have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowsons method is used to predict the acoustic source. In order to compare the experimental data, a centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal.