• Title/Summary/Keyword: case tool

Search Result 2,756, Processing Time 0.026 seconds

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

A Methodology to Develop a Curriculum based on National Competency Standards - Focused on Methodology for Gap Analysis - (국가직무능력표준(NCS)에 근거한 조경분야 교육과정 개발 방법론 - 갭분석을 중심으로 -)

  • Byeon, Jae-Sang;Ahn, Seong-Ro;Shin, Sang-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.40-53
    • /
    • 2015
  • To train the manpower to meet the requirements of the industrial field, the introduction of the National Qualification Frameworks(hereinafter referred to as NQF) was determined in 2001 by National Competency Standards(hereinafter referred to as NCS) centrally of the Office for Government Policy Coordination. Also, for landscape architecture in the construction field, the "NCS -Landscape Architecture" pilot was developed in 2008 to be test operated for 3 years starting in 2009. Especially, as the 'realization of a competence-based society, not by educational background' was adopted as one of the major government projects in the Park Geun-Hye government(inaugurated in 2013) the NCS system was constructed on a nationwide scale as a detailed method for practicing this. However, in the case of the NCS developed by the nation, the ideal job performing abilities are specified, therefore there are weaknesses of not being able to reflect the actual operational problem differences in the student level between universities, problems of securing equipment and professors, and problems in the number of current curricula. For soft landing to practical curriculum, the process of clearly analyzing the gap between the current curriculum and the NCS must be preceded. Gap analysis is the initial stage methodology to reorganize the existing curriculum into NCS based curriculum, and based on the ability unit elements and performance standards for each NCS ability unit, the discrepancy between the existing curriculum within the department or the level of coincidence used a Likert scale of 1 to 5 to fill in and analyze. Thus, the universities wishing to operate NCS in the future measuring the level of coincidence and the gap between the current university curriculum and NCS can secure the basic tool to verify the applicability of NCS and the effectiveness of further development and operation. The advantages of reorganizing the curriculum through gap analysis are, first, that the government financial support project can be connected to provide quantitative index of the NCS adoption rate for each qualitative department, and, second, an objective standard is provided on the insufficiency or sufficiency when reorganizing to NCS based curriculum. In other words, when introducing in the subdivisions of the relevant NCS, the insufficient ability units and the ability unit elements can be extracted, and the supplementary matters for each ability unit element per existing subject can be extracted at the same time. There is an advantage providing directions for detailed class program and basic subject opening. The Ministry of Education and the Ministry of Employment and Labor must gather people from the industry to actively develop and supply the NCS standard a practical level to systematically reflect the requirements of the industrial field the educational training and qualification, and the universities wishing to apply NCS must reorganize the curriculum connecting work and qualification based on NCS. To enable this, the universities must consider the relevant industrial prospect and the relation between the faculty resources within the university and the local industry to clearly select the NCS subdivision to be applied. Afterwards, gap analysis must be used for the NCS based curriculum reorganization to establish the direction of the reorganization more objectively and rationally in order to participate in the process evaluation type qualification system efficiently.

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

An Analysis of the Research Trends in Safety Education for Home Economics Education (가정과 안전교육의 연구 동향 분석)

  • Kim, Nam Eun
    • Journal of Korean Home Economics Education Association
    • /
    • v.28 no.3
    • /
    • pp.47-63
    • /
    • 2016
  • The purpose of this study is to suggest the basic information for diverse and balanced research and development in this field with understanding research trends related to safety education in home economics. In order to so, this study makes population and sampling by targeting cases which refer to 'safety' on 15 papers of academic journals related to home economics registered in the National Research Foundation from 2001 to 2015, 244 papers related to safety education area and 179 master doctorate thesis by searching keyword as 'safety'. Analysis contents are research trends of papers related to safety education by year and by subject and research trends of safety education by area and by research method. As a result of the study, first, the number of research papers related to safety education by year on home economics curriculum repeated increase and decrease and there have been consistent studies conducted on safety education with 14-52 papers per every year and yearly average 28.2 papers. On the other hand, the most number of studies conducted in 2015 with 52 papers which are twice as much of 26 papers in 2014. This seems to be affected by the announcement of safety comprehensive countermeasures from government and the emphasis of safety subject on 2015 curriculum revision of the Ministry of Education. Second, with regards to research trends by topic, 137 papers are related to safety education (29%), 336 papers are related to safety actual condition (71%). Accidents and recognition had a greater percentage in a paper before 2009 (74.4%) and studies are increased after 2009 (from 21 papers to 53 papers) in terms of development or evaluation of safety education program, development of education materials, development of education method etc. Subject area dealt with the most on the research of safety actual condition is regarding safety accidents or effective variables (23.2%). Subject regarding the variables are researches related to factors influencing family violence, internet addiction, spouse violence, willingness to purchase unsafe food, age harassment, or suicidal attempt etc. Next, researches related to safety recognition (13.9%), safety knowledge and attitude (7.4%), safety behaviors (6.3%), safety consciousness (2.3%) show in sequence. Subject area dealt with the most on the researches regarding safety education is development and evaluation of safety education program (11%) and this appears the most in 2015 by year (21.5%). Third, with regards to eight areas of safety education, there are 143 papers regarding public safety (33.8%), 106 papers regarding violence and personal safety (25.1%), 93 papers regarding general subject on safety or whole safety area (22%) and 58 papers regarding drug and internet addiction (13.7%) in sequence. And there is no paper related to first aid and 1 paper is related to occupational safety (0.2%). Occupational safety area is less researched nevertheless its included in home economic curriculum as relative chapter. First aid does not directly correlate with home economics curriculum but should be studied in preparation for accident which could happen in practical class. Forth, with regards to research trends by research method, quantitative research (89.1%) is mostly used and both research study (70.4%) and experimental research (18.7%) are used the most frequently. In particular, researches on the actual condition of safety education and experimental studies for effectiveness verification take most of research method. As qualitative studies, there are phenomenological study (3.1%) and case study (3.1%) related to actual conditions of safety accidents. 10 papers (2.4%) are mixture of quantitative and qualitative research and some research conducted research study and experimental research at the same time (0.9%). With regards to subject of study, human environments (87.5%) are more than physical environments (12.5) and students (48.4%) are more than teachers and school parents (20.6%). As the subject of physical environments, school (6.5%) is the most but home environment is none. As a result of the study, research for the development of evaluation tool for evaluating safety education, occupational safety and lifelong education should be conducted from this time forward. In addition, the object of study shall be expanded to both human environments in terms of entire life and physical environments for home. An in-depth qualitative research should be needed by observing and meeting with each student.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.