• Title/Summary/Keyword: cascaded transformers

Search Result 21, Processing Time 0.02 seconds

Experimental Analysis Result of Unified Power Quality Controller with Cascaded H-Bridges using Scaled Prototype (H-브리지로 구성된 UPQC(Unified Power Quality Conditioner)의 축소모형 실험결과 분석)

  • Cho, Yun-Ho;Han, Syung-Moon;Kim, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.93-96
    • /
    • 2005
  • This paper describes experimental analysis of UPQC, which is composed of cascaded H-bridges and single-phase multi-winding transformers. The operational characteristic was analyzed through experimental works with a scaled model, and simulations with PSCAD/EMTDC. The UPQC proposed in this paper can be directly connected to the distribution line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual UPQC system applicable for the actual distribution system.

  • PDF

Experimental Operation Analysis of Unified Power Flow Controller with Cascaded H-Bridge Modules (다계 H-브리지 모듈로 구성된 UPFC(Unified Power flow Compensator)의 실험적 동작분석)

  • Baek Seung-Tak;Han Byung-Moon;Choo Jin-Boo;Chang Byung-Hoon;Yoon Jong-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.422-430
    • /
    • 2005
  • This paper describes experimental analysis of UPFC, which is composed of cascaded H-bridge modules and single-phase multi-winding transformers for isolation. The operational characteristic was analyzed through experimental works with a scaled model, and simulation results with PSCAD/EMTDC. The UPFC proposed in this paper can be directly connected to the transmission line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual WFC system applicable for the transmission system.

Single-phase Cascaded H-bridge Multilevel Active Power Filters in AC Electric Railway Systems

  • Wu, Liran;Wu, Mingli
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.788-797
    • /
    • 2017
  • The power quality of AC electric railways has become an issue worthy of more and more concern. Many active compensators based on power converters have been proposed, but with complex transformers or coupled branches. This paper presents a single-phase cascaded H-bridge multilevel active power filter (APF), which can directly connect to the 27.5-kV power supplies to deal with power quality problems. According to field measured data, the load characteristics are analyzed, and the system configuration and control system are designed based on the load characteristic analysis. Finally, simulation and experimental results verify the effectiveness of the proposed APF system, considering some problems such as the supply voltage fluctuations and transient inrush currents in AC electric railway systems.

A New 19-level PWM Inverter for the Use of Stand-alone Photovoltaic Power Generation Systems (독립형 태양광 발전 시스템을 위한 새로운 19레벨 PWM 인버터)

  • 강필순;오석규;박성준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.452-461
    • /
    • 2004
  • A novel multilevel PWM inverter is presented for the use of stand-alone photovoltaic power generation system. In appearance, it consists of three full-bridge modules and three cascaded transformers; therefore, the configuration of the proposed multilevel PW inverter is equal to that of a prior 11-level PWM inverter. Only the turn-ratio of a transformer and its corresponding switching function are different from each other. Owing to these differences, the proposed 19-level PWM inverter has two promising advantages. First, output voltage levels increase almost twofold. Consequently, it can generate more sinusoidal output voltage waveform. Second, due to a revised switching pattern, it lightens power imposed on the transformer, which is used for compensating output voltages with chopped pulses between steps. The validity of the proposed inverter system is verified by computer-aided simulations and experimental results based on a 1 [kW] prototype. The performance of the proposed 19-level PWM inverter is compared with the Prior 11-level PWM inverter and other counterparts.

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

Fault-Tolerant Control of Cascaded H-Bridge Converters Using Double Zero-Sequence Voltage Injection and DC Voltage Optimization

  • Ji, Zhendong;Zhao, Jianfeng;Sun, Yichao;Yao, Xiaojun;Zhu, Zean
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.946-956
    • /
    • 2014
  • Cascaded H-Bridge (CHB) converters can be directly connected to medium-voltage grids without using transformers and they possess the advantages of large capacity and low harmonics. They are significant tools for providing grid connections in large-capacity renewable energy systems. However, the reliability of a grid-connected CHB converter can be seriously influenced by the number of power switching devices that exist in the structure. This paper proposes a fault-tolerant control strategy based on double zero-sequence voltage injection and DC voltage optimization to improve the reliability of star-connected CHB converters after one or more power units have been bypassed. By injecting double zero-sequence voltages into each phase cluster, the DC voltages of the healthy units can be rapidly balanced after the faulty units are bypassed. In addition, optimizing the DC voltage increases the number of faulty units that can be tolerated and improves the reliability of the converter. Simulations and experimental results are shown for a seven-level three-phase CHB converter to validate the efficiency and feasibility of this strategy.

Comparison of Multilevel Inverters Employing DC Voltage Sources Scaled in the Power of Three

  • Hyun, Seok-Hwan;Kwon, Cheol-Soon;Kim, Kwang-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.457-463
    • /
    • 2012
  • Cascaded H-bridge multilevel inverters shows a useful circuit configuration to increase the number of output voltage levels to obtain high quality output voltage. By applying the concept of the power of three to dc voltage sources, it can increase the number of output voltage levels effectively. To realize this concept, two approaches may be considered. One is to use independent dc voltage sources pre-scaled in the power of three, and the other is to use instantaneous dc voltage sources generated from a cascaded transformer, which has the secondary turn-ratios scaled in the power of three in sequence. A common feature in both approaches is to use the concept of the power of three for dc voltage sources, and a point of difference is whether it adopts a low frequency transformer or not, and where the transformer is located. According to the difference, application areas are limited and show different characteristics on THD of output voltages. We compare and analyze both approaches for their circuit configurations, voltage level generating method, THD characteristics of output voltage, efficiency, application areas, limitations, and other characteristics by experiments using 500 [W] prototypes when they generate a 27-level output voltage.

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

Cascaded H-bridge Multilevel Inverter for High Precision and Linear Control of the Rate of Ozone Yielding

  • Park, Sung-Jun;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • A multilevel inverter employing a cascade transformer is proposed for a silent-discharge-tube ozone generating system. The proposed inverter consists of four full-bridge inverters and fourteen transformers which have a series-connected secondary. It can accurately control the amplitude of the output voltage; hereby, it improves a linear characteristic of the rate of ozone yielding. The power regulation characteristics and operational principle of the proposed system are explained from a practical point of view. High precision ozone generating performance of the proposed multilevel inverter is verified by computer-aided simulations and experiment results.

A study on battery charger for an electric vehicle using the Cascaded transformers (변압기 직렬구성을 이용한 전기자동차용 배터리 충·방전기에 관한 연구)

  • Yang, Ji-Hoon;Hwang, Jung-Goo;Ko, Jae-Ha;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.443-444
    • /
    • 2015
  • 본 논문에서 제안된 충 방전기는 입 출력 절연을 통하여 안전성 향상하였고 3개의 변압기를 1차 측은 직렬로 연결하여 변압기에 권선비를 줄임으로써 충 방전기의 소형 및 경량화를 성취하였고 2차 측을 병렬 연결하여 스위칭 소자에 걸리는 전류 스트레스를 감소 시켰으며 컨버터 절연부에 직렬 공진형 Soft Switching 방식을 적용하여 높은 스위칭 주파수에서도 충 방전기에 고효율화가 가능함을 검증하였다. 본 논문에서 제안하는 내용은 PSIM를 이용한 시뮬레이션 결과로 그 타당성을 입증하였다.

  • PDF