• Title/Summary/Keyword: carrier transport mechanism

Search Result 64, Processing Time 0.026 seconds

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook;An, Jong-Deok;Jana, R.N.;Jung, Kyung-Na;Do, Jung-Hwan;Pyo, Seung-Moon;Im, Chan
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.894-900
    • /
    • 2009
  • This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.

IN VIVO INVESTIGATION ON THE INTESTINAL ABSORPTION OF VITAMIN A-ALCOHOL (RETINOL) IN RATS

  • Whang, Eun-Mi;Burger, Hans-Jurgen
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.05c
    • /
    • pp.21-21
    • /
    • 1995
  • Absorption of fat-soluble vi tamin, retinol occurs mainly in the proximal part of small intestine. But its intestinal transport mechanism isn't yet clear. The aim of the present study was to investigate on the mechanism of absorption of retinol by determining a concentration-dependent kinetic of retinol absorption in rats. The study was carried out by applying in vivo technique in which vitamin solution was infused to intestinal lumen and at the same time thoracic duct and choledochus duct were canulated to collect samples. The investigations showed that retinol is absorbed in the small intestine by a saturable, carrier-mediated transport system, i.e. wi thout signi ficant differences between the proximal and distal halves of the small intestine. The transport of retinol taken up by the enterocytes occured via different mechanisms: while the main vitamin A transport via the thoracic duct was saturated by limiting transport factors such as retinol-CRBP-II-complex formation and retinol esterification with increasing substrate concentrations, the transport of retinol metabolite product via the portal vein was proportional to the substrate concentration.ration.

  • PDF

Carrier-Mediated Tissue Distribution and Blood-Brain Barrier Transport of New Quinolones

  • Tsuji, Akira
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.57-63
    • /
    • 1997
  • Animal and clinical investigations have shown that fluoroquinolones, new quinolone antibacterial agents (NQs), are well absorbed across the intestinal tract, with a bioavailability of 60-90% after oral administration. Although some types of carrier-mediated intestinal transport mechanisms have been reported for enoxacin (ENX), ofloxacin (OFLX) and sparfloxacin (SPFX), recent results using a human intestinal epithelial cell line, Caco-2, indicated a passive or nonsaturable transport of SPFX, one of the most hydrophobic NQs. The mechanism underlying the intestinal absorption of NQs is still largely unknown. The distribution of NQs into peripheral tissues including erythrocytes is very rapid and their tissue-to-plasma concentration ratios (Kp) are considerably larger than those of inulin (an extracellular fluid space marker), in spite of almost complete ionization of NQs at the physiological pH. Our findings suggest that OFLX and lomefloxacin (LFLX) are taken up by rat erythrocytes via a transport system common to that of a water-soluble vitamin, nicotinic acid.

  • PDF

Simulation of Submicron MOSFET Using Hydrodynamic Model (Hydrodynamic model을 이용한 Submicron MOSFET의 Simulation)

  • 김충원;한백형;김경석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.122-131
    • /
    • 1993
  • In this paper, we have developed a submicron Si MOSFET simulator, which is physically based on the hydrodynamic energy transport mode. The simulator was used to investigate the nonstationary transport effects and the transient phenomena in submicron Si MOSFET's. It is found that the velocity overshoot and the carrier heating are dominant transport mechanism near the drain end of the channel and the transient phenomena is more retained in a long channel MOSFET.

  • PDF

Synthesis and Permeability of Cationic Polycarbonate-Polyurethane (양이온성 폴리카보네이트-폴리우레탄의 합성과 분리특성)

  • Lee, Snag-Woo;Oh, Boo-Keun;Lee, Young-Moo;Noh, Si Tae;Kim, Kea-Yong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.52-62
    • /
    • 1990
  • Cationic polycarbonate type polyurethane was prepared from the quaternization reaction of N-methyldiethanolamine(MDEA) in urethane backbone which was obtained from the reaction of polycarbonate polyol, MDI and MDEA(chain exetender). Tensile strength and modulus of the cationic urethane resins were increased sharply with increasing the ionic content in urethane backbone. But hydrolysis resistance was decreased with increasing ionic contents. The selectivity of the cationic polycabonate urethane membrane for water/ethanol separation by pervaporation was about 20. The carrier mediated transport mechanism was considered the most probable separation mechanism for these membranes.

  • PDF

Simple Algorithm of Structure Features Extration for Stereo Image Matching (스테레오 영상 정합을 위한 새로운 구조 정보 추출 알고리즘)

  • 최환언
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • In this reseach, double-layered photoconductor consist of the carrier generation layer(CGL) of $\varepsilon$ type copper phthalocyanine thin film by an aqueous coating method and the carrier transport layer(CGL) of polyvinyl carbazol(PVK) by spin coating. We inverstigated effect of the surfactant solution and cathod electrolysis to the crystal type of $\varepsilon$-CuPc in CGL with TEM, SEM and X- ray diffraction spectroscopy and studied the mechanism of an aqueous coating for the preparation of CGL. The effect of the washing of CGL about the electrophotographic characteristics of the $\varepsilon$-CuPc/PVK doublelayered photoconductors is studied also.

  • PDF

A Study of the High Sensitive Nonsilver Halide Imaging Material( II ) - Study of the aqueous coating mechanism and washing effect of the CGL in the $\varepsilon$-CuPc/PVK double-layered organic photoconductor - (고감도 비은염 화상재료 개발연구 ( II ) - Copper Phthalocyanine/PVK 전자사진감광체의 CGL의 수성 coating mechanism과 세정효과에 관한 연구 -)

  • 이상남
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.9 no.1
    • /
    • pp.27-44
    • /
    • 1991
  • In this research, double-layered photoconductor consist of the carrier generation layer(CGL) of ${\varepsilon}$ type copper phthalocyanine thin film by an aqueous coating method and the carrier transport layer(CGL) of polyvinyl carbazol(PVK) by spin coating. We inverstigated effect of the surfactant solution and cathod electrolysis to the crystal type of ${\varepsilon}$-CuPc in CGL with TEM, SEM and X-ray diffraction spectroscopy and studied the mechanism of an aqueous coating for the preparation of CGL. The effect of the washing of CGL about the electrophotographic characteristics of the ${\varepsilon}$-CUPC/PVK double-layered photoconductors is studied also.

  • PDF

A Study on Electric Characteristics of Multi-layer by Light Organic Emitting Diode (유기발광소자(Organic Light Emitting Diode)의 다층박막에 대한 전기적 특성 연구)

  • Lee Jung-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 2005
  • This research approached electrical characteristics of organic light emitting diodes getting into the spotlight by next generation display device. Basic mechanism of OLED's emitting is known as that electron by cathode of lower work function and hole by anode of higher work function are driven and recombine exciton-state being flowed in emitting material layer passing carrier transport layer In order to make many electron-hole pairs, we must manufacture device in multi-layer structure. There are Carrier Injection Layer(CIL), Carrier Transport Layer(CTL) and Emitting Material Layer(EML) in multi-layer structure. It is important that regulate thickness of layer for high luminescence efficiency and set mobility of hole and electron.

  • PDF

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer (구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가)

  • Lee, Jonghwan;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.