• Title/Summary/Keyword: carrier spacing

Search Result 28, Processing Time 0.018 seconds

A Broadband FIR Beamformer for Underwater Acoustic Communications (수중음향통신을 위한 광대역 FIR 빔형성기)

  • Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2151-2156
    • /
    • 2006
  • Beamforming for underwater acoustic communication (UAC) is affected by the broadband feature of UAC signal, which has relatively low currier frequency as compared to the signal bandwidth. The narrow-band assumption does not hold good in UAC. In this paper, we discuss a broadband FIR beamformer for UAC using the baseband equivalent way signal model. We consider the broadband FIR beamformer for QPSK UAC with carrier frequency 25kHz and symbol rate 5kHz. Array geometry is a uniform linear way with 8 omni-directional elements and sensor spacing is the half of the carrier wavelength. The simulation results show that the broadband n beamformer achieves nearly optimum signal to interference and noise ratio (SINR) and outperforms the conventional narrowband beamformer by SINR 0.5dB when two-tap FIR filter is employed at each sensor and the inter-tap delay is a quarter of the symbol interval. The broadband FIR beamformer performance is more degraded as the FIR filter length is increased above a certain value. If the inter-tap delay is not greater than half of the symbol period, SINR performance does not depend on the inter-tap delay. More training period is required when the inter-tap delay is same as the symbol period.

$In_2O_3$ nanoparicle 첨가에 따른 a-IGZO 소자 특성 변화 연구

  • Lee, Min-Jeong;Gang, Ji-Yeon;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • 산화물 기반의 TFT (Thin Film Transistor) 는 유리, 금속, 플라스틱 등 기판 종류에 상관없이 균일한 제작이 가능하며, 상온 및 저온에서 대면적으로 제작이 가능하고, 저렴한 비용으로 제작 가능하다는 장점 때문에 최근 많은 연구가 이루어지고 있다. 현재 TFT 물질로 많이 연구되고 있는 산화물 중 가장 많은 연구가 이루어진 ZnO 기반의 TFT는 mobility와 switching 속도에서 우수한 특성을 보이나, 트렌지스터의 안정성이 떨어지는 것으로 보고 되고 있다. 그러나 IGZO 물질의 경우 결정학적으로 비정질이며, 상온 및 저온에서 대면적으로 제작이 가능하고, 높은 전자 이동도의 특성을 가지고 있는 장점 때문에 최근 차세대 산화물 트렌지스터로 각광받고 있다. IGZO 물질의 경우 s 오비탈의 중첩으로 인해 높은 전자 이동도의 특성을 가지며, IGZO 물질 내 전자의 이동은 IGZO의 조성과 구조적 특성에 영향을 받는다. IGZO 물질의 구성 성분은 $In_2O_3$, $Ga_2O_3$, ZnO 성분으로 이루어져 있으며, $In_2O_3$의 경우 주로 carrier를 생성하고 IGZO TFT의 mobility를 향상시키는 물질로 알려져 있다. 본 연구에서 $In_2O_3$ nanoparticle을 density를 변화시켜 첨가하여 IGZO TFT 소자 제작 및 특성에 대한 평가를 진행하였다. $In_2O_3$ nanoparticle의 density에 따른 interparticle spacing과 IGZO계면 사이의 미세구조와 전기적인 특성간의 상관관계를 연구하기 위하여 IGZO TFT 특성은 HP 4145B 측정을 통하여 확인하였고, $In_2O_3$ nanoparticle의 분포와 결정성은 XRD와 AFM을 통해 분석하고, $In_2O_3$ nanoparticle의 첨가가 IGZO 소자에 미치는 가능성을 확인하였다.

  • PDF

Performance Evaluation of Mobile Across Layer in Next Generation Network (차세대 네트워크에서 모바일 액세스 계층의 성능 평가)

  • Roh Jae-Sung;Moon Il-Young
    • Journal of Digital Contents Society
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • In this paper, performance evaluation of mobile access layer for multiple-input multiple-output (MIMO) MultiCarrier(MC)/CDMA 16 QAM system is considered to mitigate multiple access interference and enhance system channel capacity in Rayleigh wireless fading channel. Traditionally, multi-path is viewed as an undesirable feature of wireless communications. Therefore, diversity and adaptive array schemes are proposed to mitigate its effects. Recently, to increase the spectrum efficiency and the link reliability, MIMO schemes is devised to exploit multi-path in a scattering wireless channel. In particular, the channel capacity of MIMO-MC/CDMA 16 QAM system is evaluated according to Eb/No, Mc, p. From the results, in order to improve the channel capacity, the signals at various elements must be uncorrelated. And if the paths are correlated due to inappropriate spacing or mutual coupling effects, the channel capacity of MIMO-MC/CDMA 16 QAM system becomes substantially smaller.

  • PDF

Performance of Wireless Network for Multimedia Services in MIMO Partial Band Channel (MIMO 부분간섭 채널에서 멀티미디어 서비스를 위한 무선 네트워크의 성능)

  • Roh Jae-Sung;Cho Sung-Joon;Kim Chun-Gil
    • Journal of Digital Contents Society
    • /
    • v.6 no.3
    • /
    • pp.137-142
    • /
    • 2005
  • CDMA scheme has received a great deal of attenttion as a multiple-access method for future mobile networks. Its main advantage: are higher radio capacity and the capacity of flexible data tranmission. And CDMA scheme is a key technology in the proposals submitted to the ITU on next generation multimedia system with integrated services, namely real-time voice services and non real-time data services. In this paper, capacity evaluation of multiple-input multiple-output(MIMO) Multi-Carrier(MC)/CDMA system is considered to mitigate multiple access interference, partial-band interference and enhance system channel capacity in wireless channel. Recently, to increase the spectrum efficiency and the link reliability, MIMO-MC/CDMA scheme is devised to exploit multi-path in a scattering wireless channel. In particular, the channel capacity of MIMO-MC/CDMA system is evaluated according to Eb/No. Mc, p and B. From the results, in order to inappropriate spacing and the signals are frequency overlapped by partial band interference, the channel capacity of MIMO-MC/CDMA system becomes substantially smaller.

  • PDF

$In_2O_3$ nanoparticle 첨가에 따른 a-IGZO channel 층의 성분 및 결정학적 특성 변화

  • Lee, Min-Jeong;Gang, Ji-Yeon;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.112.1-112.1
    • /
    • 2012
  • 산화물 기반의 TFT (Thin Film Transistor) 는 유리, 금속, 플라스틱 등 기판 종류에 상관없이 균일한 제작이 가능하며, 상온 및 저온에서 대면적으로 제작이 가능하고, 저렴한 비용으로 제작 가능하다는 장점 때문에 최근 많은 연구가 이루어지고 있다. 현재 TFT 물질로 많이 연구되고 있는 산화물 중 가장 많은 연구가 이루어진 ZnO 기반의 TFT는mobility와 switching 속도에서 우수한 특성을 보이나, 트렌지스터의 안정성이 떨어지는 것으로 보고되고 있다. 그러나 a-IGZO의 경우 결정학적으로 비정질이며, 상온 및 저온에서 대면적으로 제작이 가능하고, 높은 전자 이동도의 특성을 가지고 있는 장점 때문에 최근 차세대 산화물 트렌지스터로 각광받고 있다. IGZO 물질의 경우 s 오비탈의 중첩으로 인해 높은 전자 이동도의 특성을 가지며, IGZO 물질 내 전자의 이동은 IGZO의 조성과 구조적 특성에 영향을 받는다. IGZO 물질의 구성 성분은 $In_2O_3$, $Ga_2O_3$, ZnO 성분으로 이루어져 있으며, $In_2O_3$의 경우 주로 carrier 를 생성하고 IGZO TFT의 mobility를 향상시키는 물질로 알려져 있다. 본 연구에서는 $In_2O_3$ nanoparticle의 density를 조절하여 첨가함으로써 IGZO TFT 소자 특성에 미치는 평가를 진행하였다. $In_2O_3$ nanoparticle의 density변화에 따른 interparticle spacing과 IGZO계면 사이의 미세구조와 전기적인 특성간의 상관관계를 연구하기 위하여 IGZO TFT 특성은 HP 4145B 측정을 통하여 확인하였고, $In_2O_3$ nanoparticle의 분포와 결정성은 AFM과 XRD, TEM을 통해 분석하고 In2O3 nanoparticle의 유무에 따른 IGZO channel 층의 조성 변화를 STEM과 AES를 통해 비교 및 분석하였다.

  • PDF

Wireless Energy and Data Transmission Using Inductive Coupling (유도결합방식에 의한 무선 에너지 및 데이터 전송)

  • Lee, Joon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • Bio-implantable devices such as heart pacers, gastric pacers and drug-delivery systems require power for carrying out their intended functions. These devices are usually powered through a battery implanted with the system or are wired to an external power source. This paper describes an inductive power transmission link, which was developed for an implantable stimulator for direct stimulation of denervated muscles. The carrier frequency is around 1MHz, the transmitter coil has a diameter of 46mm, and the implant coil is 46mm. Data transmission to the implant with amplitude shift keying (ASK) and back to the transmitter with passive telemetry can be added without major design changes. We chose the range of coil spacing (2 to 30mm) to care for lateral misalignment, as it occurs in practical use. If the transmitter coil has a well defined and reliable position in respect to the implant, a smaller working range might be sufficient. Under these conditions the link can be operated in fixed frequency mode, and reaches even higher efficiencies of up to 37%. The link transmits a current of 50 mA over a distance range of 2-15 mm with an efficiency of more than 20% in tracking frequency. The efficiency of the link was optimized with different approaches. A class E transmitter was used to minimize losses of the power stage. The geometry and material of the transmitter coil was optimized for maximum coupling. Phase lock techniques were used to achieve frequency tracking, keeping the transmitter optimally tuned at different coupling conditions caused by coil distance variations.

  • PDF

The recombination velocity at III-V compound heterojunctions with applications to Al/$_x$/Ga/$_1-x$/As-GaAs/$_1-y$/Sb/$_y$/ solar cells

  • 김정순
    • 전기의세계
    • /
    • v.28 no.4
    • /
    • pp.53-63
    • /
    • 1979
  • Interface recombination velocity in $Al_{x}$G $a_{1-x}$ As-GaAs and $Al_{0.85}$, G $a_{0.15}$ As-GaA $s_{1-y}$S $b_{y}$ heterojunction systems is studied as a function of lattice mismatch. The results are applied to the design of highly efficient III-V heterojunction solar cells. A horizontal liquid-phase epitaxial growth system was used to prepare p-p-p and p-p-n $Al_{x}$G $a_{1-x}$ As-GaA $s_{1-y}$S $b_{y}$-A $l_{x}$G $a_{1-x}$ As double heterojunction test samples with specified values of x and y. Samples were grown at each composition, with different GaAs and GaAs Sb layer thicknesses. A method was developed to obtain the lattice mismatch and lattice constants in mixed single crystals grown on (100) and (111)B oriented GaAs substrates. In the AlGaAs system, elastic lattice deformation with effective Poisson ratios .mu.$_{eff}$ (100=0.312 and .mu.$_{eff}$ (111B) =0.190 was observed. The lattice constant $a_{0}$ (A $l_{x}$G $a_{1-x}$ As)=5.6532+0.0084x.angs. was obtained at 300K which is in good Agreement with Vegard's law. In the GaAsSb system, although elastic lattice deformation was observed in (111) B-oriented crystals, misfit dislocations reduced the Poisson ratio to zero in (100)-oriented samples. When $a_{0}$ (GaSb)=6.0959 .angs. was assumed at 300K, both (100) and (111)B oriented GaAsSb layers deviated only slightly from Vegard's law. Both (100) and (111)B zero-mismatch $Al_{0.85}$ G $a_{0.15}$As-GaA $s_{1-y}$S $b_{y}$ layers were grown from melts with a weight ratio of $W_{sb}$ / $W_{Ga}$ =0.13 and a growth temperature of 840 to 820 .deg.C. The corresponding Sb compositions were y=0.015 and 0.024 on (100) and (111)B orientations, respectively. This occurs because of a fortuitous in the Sb distribution coefficient with orientation. Interface recombination velocity was estimated from the dependence of the effective minority carrier lifetime on double-heterojunction spacing, using either optical phase-shift or electroluminescence timedecay techniques. The recombination velocity at a (100) interface was reduced from (2 to 3)*10$^{4}$ for y=0 to (6 to 7)*10$^{3}$ cm/sec for lattice-matched $Al_{0.85}$G $a_{0.15}$As-GaA $s_{0.985}$S $b_{0.015}$ Although this reduction is slightly less than that expected from the exponential relationship between interface recombination velocity and lattice mismatch as found in the AlGaAs-GaAs system, solar cells constructed from such a combination of materials should have an excellent spectral response to photons with energies over the full range from 1.4 to 2.6 eV. Similar measurements on a (111) B oriented lattice-matched heterojunction produced some-what larger interface recombination velocities.ities.ities.s.

  • PDF

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF