• Title/Summary/Keyword: carrier film

Search Result 734, Processing Time 0.033 seconds

Influence of carrier suppressors on electrical properties of solution-derived InZnO-based thin-film transistors

  • Sim, Jae-Jun;Park, Sang-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.262-262
    • /
    • 2016
  • 최근 고해상도 디스플레이가 주목받으면서 기존 비정질 실리콘(a-Si)을 대체할 수 있는 재료에 관한 연구가 활발히 진행되고 있다. a-Si의 경우 간단한 공정 과정, 적은 생산비용, 대면적화가 가능하다는 장점이 있지만 전자 이동도가 매우 낮은 단점이 있다. 반면, 산화물 반도체는 비정질 상태에서 전자 이동도가 높으며 큰 밴드갭을 가지고 있어 투명한 특성을 나타낼 뿐만 아니라, 저온공정이 가능하여 기판의 제한이 없는 장점을 가지고 있다. 대표적으로 가장 널리 연구되고 있는 산화물 반도체는 a-IGZO(amorphous indium-gallium-zinc oxide)이다. 그러나 InZnO(IZO) 기반의 산화물 반도체에서 carrier suppressor 역할을 하는 Ga(gallium)은 수요에 대한 공급이 원활하지 못하여 비싸다는 단점이 있다. 그러므로 경제적이면서 a-IGZO와 유사한 전기적 특성을 나타낼 수 있는 suppressor 물질이 필요하다. 따라서 본 연구에서는 IZO 기반의 산화물 반도체에서 Ga을 Hf(hafnium), Zr(zirconium), Si(silicon)으로 대체하여 용액증착(solution-deposition) 공정으로 각각의 채널층을 형성한 back-gate type의 박막 트랜지스터(thin-film transistor, TFT) 소자를 제작하였다. 용액증착 공정은 물질의 비율을 자유롭게 조절할 수 있고, 대기압의 조건에서도 공정이 가능하기 때문에 짧은 공정시간과 저비용의 장점이 있다. 제작된 소자는 p-type Si 위에 게이트 절연막으로 100 nm의 열산화막이 성장된 기판을 사용하였다. 표준 RCA 클리닝 후에 각 solution 물질을 spin coating 방식으로 증착하였다. 이후, photolithography, develop, wet etching의 과정을 거쳐 채널층 패턴을 형성하였다. 또한, 산화물 반도체의 전기적 특성을 향상시키기 위해서 후속 열처리 과정(post deposition annealing, PDA)은 필수적이다. CTA 방식은 높은 열처리 온도와 긴 열처리 시간의 단점이 있다. 따라서, 본 연구에서는 $100^{\circ}C$ 이하의 낮은 온도와 짧은 열처리 시간의 장점을 가지는 MWI (microwave irradiation)를 후속 열처리로 진행하였다. 그 결과, 각 물질로 구현된 소자들은 기존 a-IGZO와 비교하여 적은 양의 carrier suppressor로도 우수한 전기적 특성 및 안정성을 얻을 수 있었다. 따라서, Si, Hf, Zr 기반의 산화물 반도체는 기존의 Ga을 대체하여 저비용으로 디스플레이를 구현할 수 있는 IZO 기반 재료로 기대된다.

  • PDF

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Electro-Optical Properties of AZO Thin Films with Deposition & Heat treatment Conditions (AZO 박막의 증착 및 열처리 조건에 따른 전기·광학적 특성)

  • Yeon, Eung-Beom;Lee, Taek-Yong;Kim, Seon-Tai;Lim, Sang-Chul
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.558-565
    • /
    • 2020
  • AZO thin films are grown on a p-Si(111) substrate by RF magnetron sputtering. The characteristics of various thicknesses and heat treatment conditions are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall effect and room-temperature photoluminescence (PL) measurements. The substrate temperature and the RF power during growth are kept constant at 400 ℃ and 200 W, respectively. AZO films are grown with a preferred orientation along the c-axis. As the thickness and the heat treatment temperature increases, the length of the c-axis decreases as Al3+ ions of relatively small ion radius are substituted for Zn2+ ions. At room temperature, the PL spectrum is separated into an NBE emission peak around 3.2 eV and a violet regions peak around 2.95 eV with increasing thickness, and the PL emission peak of 300 nm is red-shifted with increasing annealing temperature. In the XPS measurement, the peak intensity of Al2p and Oll increases with increasing annealing temperature. The AZO thin film of 100 nm thickness shows values of 6.5 × 1019 cm-3 of carrier concentration, 8.4 cm-2/V·s of mobility and 1.2 × 10-2 Ω·cm electrical resistivity. As the thickness of the thin film increases, the carrier concentration and the mobility increase, resulting in the decrease of resistivity. With the carrier concentration, mobility decreases when the heat treatment temperature increases more than 500 ℃.

The Hall Measurement and TMA Gas Detection of ZnO-based Thin Film Sensors (ZnO 박막 센서의 TMA 가스 및 Hall 효과 측정)

  • Ryu, Jee-Youl;Park, Sung-Hyun;Choi, Hyek-Hwan;Lee, Myong-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 1997
  • The TMA gas sensors are fabricated with the ZnO-based thin films grown by a RF magnetron sputtering method. We investigate the surface carrier concentration, Hall electron mobility, electrical resistivity and sensitivity according to temperature variation and TMA gas concentration. The ZnO-based thin film sensors prepared by sputtering in oxygen showed higher surface carrier concentration, higher Hall mobility, higher sensitivity, and lower electrical resistivity than sensors prepared by sputtering in argon. The doping ZnO-based thin film sensors showed the same electrical properties in comparison with nondoping sensors. In case of sputtering on the oxygen gaseous atmosphere, the ZnO-based thin film sensors doped with 4.0 wt.% $Al_{2}O_{3}$, 1.0 wt.% $TiO_{2}$, and 0.2 wt.% $V_{2}O_{3}$ showed the highest surface carrier concentration of $5.95{\times}10^{20}cm^{-3}$, Hall electron mobility of $177\;cm^{2}/V{\cdot}s$, lowest electrical resistivity of $0.59{\times}10^{-4}{\Omega}{\cdot}cm$ and highest sensitivity of 12.1(working temperature, $300^{\circ}C$, TMA gas, 8 ppm).

  • PDF

A Study of carrier gas and ligand addition effect on MOCVD Cu film deposition (운반기체와 Ligand의 첨가가 MOCVD Cu 증착에 미치는 영향에 관한 연구)

  • 최정환;변인재;양희정;이원희;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.197-206
    • /
    • 2000
  • The deposition characteristics of MOCVD Cu using the (hfac)Cu(1,1-COD)(1,1,1,5,5,5-hexafluoro-2,4-pentadionato Cu(I) 1,5-cyclooctadine) have been investigated in terms of the effects of carrier gas such as hydrogen and argon as well as the effects of H(hfac) ligand addition. MOCVD Cu using a hydrogen carrier gas led to a higher deposition rate and lower resistivity than an argon carrier gas system. The improvement in the surface roughness of the MOCVD Cu films and the (111) preferred orientation texture was obtained by using a hydrogen carrier gas. However, the adhesion characteristics of the films showed relatively weaker compared to the Ar carrier gas system, probably due to the larger amount of F content in the films, which was confirmed by the AES analyses. When an additional H(hfac) ligand was added, the deposition rate was significantly enhanced in the case of an argon + H(hfac) carrier gas system while significant change in the deposition rate of MOCVD Cu was not observed in the case of the hydrogen carrier gas system. However, the addition of H(hfac) in both carrier gases led to lowering the resistivity of the MOCVD Cu films. In conclusion, this paper suggests the deposition mechanism of MOCVD Cu and is expected to contribute to the enhancement of smooth Cu films with a low resistivity by manipulating the deposition conditions such as the carrier gas and addition of H(hfac) ligand.

  • PDF

Study on a New ACF Bonding Methods in LCD Module Using a High Power Diode Laser (다이오드레이저를 이용한 디스플레이 모듈 내 이방성 전도 필름(ACF) 접합 기술에 관한 연구)

  • Ryu K. H.;Seon M. H.;Nam G. J.;Kwak N. H.
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2005
  • A bonding process between tape-carrier package and a glass panel with anisotropic conductive film (ACF) has been investigated by making use of high power diode laser as a heat source for cure. The results from modeling of process and from optical properties of layers showed that heat absorbed from polyimide film surface and ACF layer is dominant source of curing during laser illumination. Laser ACF bonding has better bonding quality than conventional bonding in view of peel strength, flatness, pressure unbalance and processing time. New ACF bonding processes by making use of high power diode laser are proposed.

  • PDF

Hall Effect Characteristics of InSb Thin Film (InSb 박막의 홀효과 특성)

  • Lee, Woo-Sun;Cho, Jun-Ho;Choi, Kun-Woo;Jeong, Yong-Ho;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.6-9
    • /
    • 2000
  • InSb hall effect of multilayerd structures were investigated. According to variation of magnetic field measured hall coefficient, Hall mobility, carrier density and hall voltage. For the measurement of electrical properties of hall device, evaperated InSb thin film fabricated with series and parallel multilayers. We found that the XRD analysis of InSb thin film showed good properties at $200^{\circ}C$, 60 minutes. Resistance of ohmic contact increased linearly due to increasing current. Some of device fabrication technique and analysis of Hall effect were discussed.

  • PDF

Design of Thermoelectric Films for Micro Generators (마이크로 발전기의 열전박막 설계)

  • Kim, Hyun-Se;Lee, Yang-Lae;Lee, Kong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1455-1458
    • /
    • 2007
  • In this research, a polycrystalline silicon (poly-Si) film layer for micro thermoelectric generator (TEG) was fabricated. The fabrication process of the thermoelectric poly-Si film layer is explained. The P-type and N-type poly-Si films were fabricated on a tetra ethoxy silane (TEOS) layer with a supporting Si wafer. Seebeck coefficient and electrical conductivity were measured, including the transport properties such as the hall coefficient, hall mobility and carrier concentration. The design parameters for a rapid thermal process (RTP) were decided based on the experimental results. The measured power factors of the P-type and N-type were $21.2\;{\mu}Wm^{-1}K^{-2}$ and $26.7\;{\mu}Wm^{-1}K^{-2}$, respectively.

  • PDF

Effects of 4MP Doping on the Performance and Environmental Stability of ALD Grown ZnO Thin Film Transistor

  • Kalode, Pranav Y.;Sung, M.M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.471-471
    • /
    • 2013
  • Highly stable and high performance amorphous oxide semiconductor thin film transistors (TFTs) were fabricated using 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD). The 4 MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn: 4MP pulses. The carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}$/$cm^3$ to $2,903{\times}10^{14}$/$cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of $8.4cm^2V-1s-1$ and on/off current ratio of $10^6$. Such 4MP doped ZnO TFTs were stable under ambient conditions for 12 months without any apparent degradation in their electrical properties. Our result suggests that 4 MP doping can be useful technique to produce more reliable oxide semiconductor TFT.

  • PDF

Microstructure and Electrical Properties of $RuO_2$ System Thick Film Resistors ($RuO_2$계 후막저항체의 미세구조와 전기적성질)

  • 구본급;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.337-344
    • /
    • 1990
  • As a function of sintering temperature and time, the electrical properties of ruthenium based thick film resistors were investigated with microstructure. The variatio of resistivity and TCR(temperature coefficient of resistance)trends of sintered speciman at various sintering temperature were different low resistivity paste(Du Pont 1721) from high one(Du Pont 1741). These phenomena are deeply relative to microstructure of sintered film. With increasing the sintering temperature for 1721 system, the electrical sheet resistivity decreased, but again gradually increased above 80$0^{\circ}C$. And TCR trends in 1721 system are all positive. On the other hand the electrical sheet resistivity of 1741 resistor system decreased with sintering temperature. And TCR trends variable according to sintering temperature. TCR of speciman sintered at $700^{\circ}C$ was negative value, and TCR of 80$0^{\circ}C$ sintered speciman coexisted negative and positive value. But in case of speciman sintered at 90$0^{\circ}C$, TCR was positive value. As results of this fact, it was well known that the charge carrier contributied to electrical conduction in 1741 resistor system varied with sintering temperature.

  • PDF