• Title/Summary/Keyword: cariogenic biofilm

Search Result 20, Processing Time 0.03 seconds

Antimicrobial Effect of Polyphenon 60 against Streptococcus mutans and Streptococcus sobrinus

  • Park, Tae-Young;Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.123-127
    • /
    • 2018
  • Polyphenon 60 refers to the mixture of catechins present in green tea. The aim of this study was to investigate the antimicrobial activities of polyphenon 60 against 4 strains of Streptococcus mutans and 2 strains of Streptococcus sorbrinus, which are the major causative bacteria of dental caries. The minimum bactericidal concentration (MBC) values of polyphenon 60 for S. mutans and S. sobrinus were determined and the effect of biofilm formation inhibition of that was evaluated. The MBC value of polyphenon 60 against the bacterial strains was 2.5 mg/ml except for one particular strain, S. mutans KCOM 1128 for which the value was 1.25 mg/ml. The results of biofilm formation inhibition assay revealed that polyphenon 60 inhibited biofilm formation more than 90% at a concentration of 2.5 mg/ml. It was apparent that polyphenon exhibited biofilm formation inhibition activity along with bactericidal effect against S. mutans and S. sobrinus. Therefore, it is proposed that polyphenon 60 as one of the components of bactericidal agents could be useful in developing oral hygiene products, toothpaste or gargling solution.

Effect of Leuconustoc spp. on the Formation of Streptococcus mutans Biofilm

  • Kang, Mi-Sun;Kang, In-Chol;Kim, Seon-MI;Lee, Hyun-Chul;Oh, Jong-Suk
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.291-296
    • /
    • 2007
  • Insoluble glucans synthesized by Streptococcus mutans enhance the pathogenicity of oral biofilm by promoting the adherence and accumulation of cariogenic bacteria on the surface of the tooth. The objective of this study was to investigate the effect of Leuconostoc spp. on the in vitro formation of S. mutans biofilm. Three strains, Leuconostoc gelidum A TCC 49366, Leuconostoc mesenteroides ssp. cremoris A TCC 19254 and Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293, were used in this study. They exhibited profound inhibitory effects on the formation of S. mutans biofilm and on the proliferation of S. mutans. The water-soluble polymers produced from sucrose were most strongly produced by L. gelidum, followed by L. mesenteroides ssp. cremoris and L. mesenteroides ssp. mesenteroides. The mean wet weights of the artificial biofilm of S. mutans were also significantly reduced as a result of the addition of the water-soluble polymers obtained from Leuconostoc cultures. According to the results of thin-layer chromatographic analysis, the hydrolysates of the water-soluble polymers produced by Leuconostoc were identical to those of dextran T-2000, forming predominately ${\alpha}-(1-6)$ glucose linkages. These results indicate that dextran-producing Leuconostoc strains are able to inhibit the formation of S. mutans biofilm in vitro.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

Inhibitory effects of Coptis chinensis extract on the growth and biofilm formation of Streptococcus mutans and Streptococcus sobrinus

  • Kim, Si Yeong;Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jung, Chul Jong;Bek, Gyung Yun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.143-151
    • /
    • 2020
  • Streptococcus mutans and Streptococcus sobrinus play important roles in dental caries. Coptis chinensis is a natural product with antimicrobial activity against enterobacteria; however, its effects on oral streptococci are still unknown. Therefore, the effects of C. chinensis on the growth and biofilm formation of the representative cariogenic bacteria S. mutans and S. sobrinus were investigated for the possible use of C. chinensis as an anticaries agent. The C. chinensis extract was diluted with sterile distilled water, and 0.1-2.5% of the extract was used in the experiment. The effects of the C. chinensis extract on the growth and glucan formation of S. mutans and S. sobrinus were measured by viable cell counting and spectrophotometry at 650 nm absorbance, respectively. Crystal violet staining was also carried out to confirm the C. chinensis extract's inhibitory effect on biofilm formation. The C. chinensis extract significantly inhibited the growth of S. mutans and S. sobrinus at concentrations of ≥ 0.3% as compared with the control group. The viable cell count of colonies decreased by 1.7-fold and 1.2-fold at 2.5% and 1.25%, respectively, compared with the control group. The biofilm formation of S. mutans and S. sobrinus was inhibited by > 20-fold at C. chinensis extract concentrations of ≥ 1.25% as compared with the control group. In summary, the C. chinensis extract inhibited the growth and biofilm and glucan formation of S. mutans and S. sobrinus. Therefore, C. chinensis might be a potential candidate for controlling dental caries.

Effect of the Antimicrobial Peptide $\small{D}$-Nal-Pac-525 on the Growth of Streptococcus mutans and Its Biofilm Formation

  • Li, Huajun;Cheng, Jya-Wei;Yu, Hui-Yuan;Xin, Yi;Tang, Li;Ma, Yufang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1070-1075
    • /
    • 2013
  • Streptococcus mutans is the primary etiological agent of dental caries. The antimicrobial peptide $\small{D}$-Nal-Pac-525 was designed by replacing the tryptophans of the Trp-rich peptide Pac-525 with $\small{D}$-${\beta}$-naphthyalanines. To assess the effect of $\small{D}$-Nal-Pac-525 on cariogenic bacteria, the activity of $\small{D}$-Nal-Pac-525 on the growth of S. mutans and its biofilm formation were examined. $\small{D}$-Nal-Pac-525 showed robust antimicrobial activity against S. mutans (minimum inhibitory concentration of 4 ${\mu}g/ml$). Using scanning electron microscopy and transmission electron microscopy, it was shown that $\small{D}$-Nal-Pac-525 caused morphological changes and damaged the cell membrane of S. mutans. $\small{D}$-Nal-Pac-525 inhibited biofilm formation of S. mutans at 2 ${\mu}g/ml$. The results of this study suggest that $\small{D}$-Nal-Pac-525 has great potential for clinical application as a dental caries-preventing agent.

Application of Teeth Whitening LED for Prevention of Dental Caries : Antimicrobial Photodynamic Therapy Approach (치아우식 예방을 위한 치아미백기의 활용 : 광역동 치료로서의 접근)

  • Park, Choa;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.1
    • /
    • pp.70-77
    • /
    • 2020
  • The present study is aimed to assess the effect of antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans biofilm through teeth whitening light emitting diode (LED). Planktonic and dynamic biofilm state cultures of S. mutans were used. Erythrosine 20 μM/L was used as the photosensitizer. Irradiation was performed by exposing cultures to clinic and homecare whitening LEDs for 15 minutes. The viability was measured through Colony Forming Unit counts and confocal laser scanning microscopy. aPDT using whitening LEDs and erythrosine significantly decreased the CFU count of S. mutans compared to that in the control group. Dynamic biofilm group showed more resistant features to aPDT compared with planktonic state. Clinic and homecare whitening LED device showed similar antimicrobial effect. The whitening LED, which could irradiate the entire oral arch, showed a significant photodynamic effect on cariogenic S. mutans biofilm. aPDT mediated by erythrosine and LEDs used for teeth whitening exhibited promising antimicrobial activity.

THE EFFECT OF FERMENTED MILK ON VIABLE CELL COUNT AND BIOFILM FORMATION OF STREPTOCOCCUS MUTANS (유산균 발효유가 Streptococcus mutans의 생균수 및 biofilm 형성에 미치는 영향)

  • Shin, Hye-Sung;Kim, Seon-Mi;Choi, Nam-Ki;Yang, Kyu-Ho;Kang, Mi-Sun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.358-366
    • /
    • 2009
  • Lactic acid bacteria worked positively on gastrointestinal tract and oral environment. So I selected commercial five fermented milks and milk, and then I evaluated their effect of growth inhibition and biofilm formation of cariogenic bacteria, Streptococcus mutans. And also calculated the acidity, buffering capacity, concentration of Ca and P ion and pH change of those drinks. After adding S. mutans to fermented milks viable cell count of S. mutans in milk was not statistically different but those in all fermented milks were decreased as concentration of fermented milk increased. When I measured the amount of formed biofilm in 10% fermented milks and milk with S. mutans and compared with those without S. mutans, the amount was decreased in Active GG and Bulgaris while being increased in Tootee, Ace and milk(P<0.05). The fermented milk with the lowest pH value was E5(3.48${\pm}$0.01), and the highest was Bulgaris(4.19${\pm}$0.02). pH change of the fermented milks and milk with S. mutans was measured. The highest acid producing fermented milk was Bulgaris, and followed by Active GG, Ace, Tootee, E5, Milk. These results indicated that fermented milks had caries activity due to the value of initial acidity and acid producing capacity. But, concentrated fermented milks had the inhibitory effect against S. mutans, and also had high volume of Ca and P ion that protected teeth. So I suggest that they have positive effect on teeth.

  • PDF

Antimicrobial synergism of Camellia sinensis-isolated five phenol compounds and R-(-)-carvone against mutans streptococci (다엽의 5가지 페놀성분과 R-(-)-carvone의 치아우식균 Mutans Streptococci에 대한 항균력 상승효과)

  • Song, Ok-Hee;Kang, Ok-Hua;Mun, Su-Hyun;Kim, Min-Chul;Han, Young-Sun;Choi, Sung-Hoon;Lee, Young-Seob;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.7-13
    • /
    • 2016
  • Objectives : Camellia sinensis (Theaceae) possesses a various beneficial effects such as free radical-scavenging, inactivation of urokinase in cancer cell proliferation, antibacterial, and hypotensive. Dental caries is one of the most common oral infectious disease in a human. Oral microorganisms play a significant role in the etiology of dental caries. An aberration to this ecology due to dietary habits, improper oral hygiene or systemic factors lead to an increase in cariogenic microorganisms. Cariogenic microorganisms like Streptococcus mutans and Streptococcus sobrinus encourage the accumulation and adherence of plaque biofilm by metabolizing sucrose into glucans. The purpose of this study was to investigate the antimicrobial activity of phenolic compounds of Camellia sinensis and R-carvone, monoterpenes, is can be found naturally in numerous essential oils, on Streptococcus mutans and Streptococcus sobrinus .Methods : The antimicrobial activity of these compounds was determined by the broth microdilution method and checkerboard dilution assay to investigate the potential synergistic effects of each five compounds of Camellia sinensis (C. sinensis) and R-carvone.Results : C. sinensis-isolated compounds and R-carvone were determined with MIC of more than 1,000 ㎍/mL. However, the combination test showed significant synergism against S. mutans and S. sobrinus, implicated in the lowered MICs.Conclusions : These results suggest that combinatory application of phenolic five compounds (theophyllin, l-theanine, epicatechin, epicatechin gallate, and caffeine) from C. sinensis and R-carvone has a potential synergistic effect and thus may be useful as a mouthrinse in helping control cariogenic microorganism.

Evaluation of Acid Resistance of Demineralized Dentin after Silver Diamine Fluoride and Potassium Iodide Treatment (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 변화하는 탈회 상아질의 내산성 평가)

  • Haesong, Kim;Juhyun, Lee;Siyoung, Lee;Haeni, Kim;Howon, Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.392-401
    • /
    • 2022
  • This study investigated the effects of silver diamine fluoride (SDF) and potassium iodide (KI) treatments on the acid resistance of dentin exposed to secondary caries. Sixteen bovine dentin specimens with artificially induced caries were assigned to the following four groups: untreated negative control, untreated positive control, SDF-treated (SDF), and SDF and KI-treated (SDFKI). Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens for 28 days, except for the negative control group. Specimens from the negative control group were stored in phosphate-buffered saline for that period. After a cariogenic biofilm challenge, the degree of demineralization was evaluated using micro-computed tomography (micro-CT). As a result of data analysis using micro-CT, the demineralization depths of the negative control, positive control, SDF, and SDFKI groups were 149.0 ± 7 ㎛, 392.0 ± 11 ㎛, 206.0 ± 20 ㎛, and 230.0 ± 31 ㎛, respectively. The degree of demineralization was significantly reduced in the SDF and SDFKI groups compared with that in the untreated positive control group. There were no significant differences between the SDF and SDFKI groups. This study confirmed that SDF and SDFKI treatments increase the acid resistance of dentin to secondary caries. KI did not significantly affect the caries-arresting effect of the SDF.

Antimicrobial Effect of Photodynamic Therapy Using Plaque Disclosing Agent (치면착색제를 이용한 광역동 치료의 항균 효과)

  • Kho, Junhee;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • The aim of this study was to evaluate the antimicrobial effect of photodynamic therapy (PDT) using plaque disclosing agent, 10 - 20 mM erythrosine, as a photosensitizer. Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei and Candida albicans were formed on hydroxyapatite disc. 20 μM, 10 mM and 20 mM erythrosine were applied as a photosensitizer for 3 minutes, and then light-emitting diode (LED) irradiated for 24 seconds. Colony-forming unit (CFU) were measured and biofilms were observed using confocal laser scanning microscopy (CLSM). CFU were significantly decreased in the PDT groups using 10 - 20 mM erythrosine (10 mM, 20mM) and the results were also confirmed by CLSM. This study confirms the high antimicrobial effect of photodynamic therapy using plaque disclosing agent as a photosensitizer.