• Title/Summary/Keyword: carburizing

Search Result 141, Processing Time 0.022 seconds

Effects of the Gas Composition on Internal Oxidation Characteristics of Low Carbon Alloy Steel during Carburizing in Nitrogen-Propane-Air Atmospheres (질소-프로판-공기분위기에서 저탄소 합금강의 침탄시 내부산화 특성에 미치는 가스조성의 영향)

  • Roh, Y.S.;Kim, S.M.;Kim, Y.H.;Kim, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.53-60
    • /
    • 1991
  • This study has been performed to investigate into the internal oxidation characteristics of low carbon steel with respect to the added amount of air in nitrogen-propane atmosphere after gas carburizing for various times at $930^{\circ}C$. The results obtained from the experiment are as follows ; (1) Optical micrographs have shown that the internal oxidation is unlikely to occur in the gas atmosphere without air and that oxidized zone in the outer surface layer is formed in the gas atmosphere with air revealing that the depth of oxidized zone increases with increasing the added amount of air. (2) The formation of internally oxidized zone in the outer surface layer has been found to be inhibited as Ni content increases, i. e, the amount of alloying element increases. (3) The depth of oxidation has been measured to increase with almost parabolically gas carburizing time of up to 6 hours.

  • PDF

A Study on the Thermal Deformation Simulation of Spur Gear According to the Heat Zones in Heat Treatment Process (열처리 공정에서 가열 영역에 따른 평기어의 열변형 해석에 관한 연구)

  • Kim, Jin-Rok;Yoon, Sung-Ho;Jung, Yun-Chul;Suh, Chang-Hee;Kwon, Tae-Ha
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.60-66
    • /
    • 2020
  • In order to improve fatigue life of transmission gear carburizing is normally used. Carburizing is a very good process to achieve low cost and high performance. The machined gears are heated up to carburizing temperature and then cooled rapidly in an oil bath to produce high surface hardness. The gears may undergo excessive thermal distortion during heating and rapid cooling. In order to predict the distortion during heating and rapid cooling, a coupled thermo-mechanical simulation is needed. In the current research, the simulation of heating and cooling was performed. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation. In addition, induction heating and rapid cooling simulation is carried out to predict the thermal distortion. The amount of distortion is compared. It is shown that induction heating is very effective to reduce thermal distortion.

Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향)

  • Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

A Study on Flat Iron Axe Manufacturing Technology Using Metallurgical Analysis - Focused on the Artifacts Excavated from the Hadae Ancient Tombs in Ulsan - (금속학적 분석을 통한 판상철부의 제작기술 연구 - 울산 하대고분 출토 유물을 중심으로 -)

  • Jo, Hanui;You, Halim;Lee, Jaesung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.240-251
    • /
    • 2019
  • This study examined the manufacturing technology used for the flat iron axes excavated from Ulsan Hadae. Their microstructures were analyzed using metallurgical methods. In addition, a variety of manufacturing technologies were examined and compared using existing research materials on flat iron axes. As a result of analyzing ten flat iron axes, which were excavated in the order that they were laid out in a row in one of the wooden coffin tombs at Ulsan Hadae, Tomb No. 44, it was possible to classify the flat iron axe manufacturing technology and system into three types: 'pure iron - shape processing', 'pure iron - shape processing - carburizing', and 'pure iron - shape processing - carburizing - decarburizing.' All of the flat iron axes were produced by forging, and most of them were made by beating the pure iron into their shapes. In particular, a number of the flat iron axes were reinforced through a carburizing process after shaping the iron. This appears as steel products forming the basis of the steel industry at the time were commonly used as an intermediary material or currency. On the other hand, it was commonly found in all samples that the hardening was not performed after shaping or carburizing. Since the microstructure of the flat iron axes made of pure iron contained a large number of impure inclusions and the result of analyzing the components of the non-metal inclusions showed characteristics of slag which contains a mixture of glass phase and wustite, it is possible that low-temperature reduction was used in the refining process.