• Title/Summary/Keyword: carboxypeptidase E

Search Result 16, Processing Time 0.024 seconds

Synthesis of $\alpha$-L-Aspartyl-L-phenylalanine Methyl Ester from an Artificial Polypeptide

  • Choi, Soon-Yong;Kim, Hyun-Soo;Lee, Se-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • The aspartame, $\alpha$-L-aspartyl-L-phenylalanine methylester, is an artificial sweetener. Taking advantage of the fact that the aspartame is a derivative of dipeptide, synthesis of aspartame from the artificial polypeptide made by an artificial gene has been attempted. The artificial polypeptide (LAP32), a polymer of tripeptide (aspartyl-phenylalanyl-lysine), was purified from the E. coli cells harboring a recombinant plasmid containing the artificial gene. This polypeptide was then digested with trypsin and carboxypeptidase B to produce dipeptide (Asp-Phe). Using the esterase activity of $\alpha$-chymotrypsin, the dipeptide was directly converted into Asp-Phe methylester in a water-methanol system. When the methanol concentration in reaction mixture was 25%, 50% of dipeptide was converted to the dipeptide methylester without producing any by-products.

  • PDF

Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.648-657
    • /
    • 2008
  • In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

Isolation and Properties of Bacteriocin-producing Microorganisms (Bacteriocin 생산균주의 분리 및 성질)

  • 유진영;이이선;남영중;정건섭
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.8-13
    • /
    • 1991
  • Bacteriocin-producing microorganisms were screened from raw milk and tested their antimicrobial activities against Lactobacillus plantarum ATCC 8014 as target organism, Antimicrobial substances isolated showed broad antimicrobial spectra against Gram positives and negatives. Strain 1112-1 was selected as a test organism due to its highest antimicrobial activity among the isolates. Antimicrobial substance produced by 1112-1 completely suppressed the growth of Lactobacillus plantarum at 230 IUIml and showed 11% growth inhibition of E. coli at 500 IUIrnl level. The antimicrobial substance was found to be proteinaceous material which was inactivated by carboxypeptidase, elastase, alpha amylase, amyloglucosidase, pronase, protease IV, alpha chymotrypsin, ficin, cellulase, phosphatase and lipase. The molecular weight was estimated by SDS-PAGE as 5,900. The isolate 1112-1 was identified as one of the related strains of Lactococcus sp. The strain was different from Lactococcus lactis in the following characteristics: late positive in maltose and sucrose fermentation; positive in mannitol and salicin fermentation; negative in lactose fermentation.

  • PDF

Development of a Recombinant Streptomyces griseus with sprA and sprB Genes for Proteolytic Enzyme Production (Streptomyces griseus IFO13350 유래 sprA 및 sprB 유전자를 이용한 Pretense 생산균주 개발)

  • Hwang Ji-Hwan;Lee Chang-Kwon;Lee Kang-Mu;Jo Byoung-Kee;Park Hae-Ryong;Hwang Yong-Il
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.87-92
    • /
    • 2005
  • Pronase, a protease produced for commercial purpose by Streptomyces griseus, was composed of serine protease, alkaline protease, aminopeptidase and carboxypeptidase complex, and it has been widely used as anti-inflammatory drugs for human therapy. In this study, we developed a new integration vector, pHJ101 derived from pSET152, containing strong promoter, ermE, to overexpress a certain protease gene. Specific PCR primers for cloning of sprA (a gene for S. griseus protease A) and sprB (a gene for S. griseus protease B) genes were designed from the basis of nucleotide sequence in databases and amplified by PCR. Plasmid pHJ201 and pHJ202 were constructed by inserting of amplified each gene in a vector pHJ101. S. griseus HA and S. griseus HB were respectively obtained by conjugal process of a parent strain, S. griseus IFO 13350 with the recombinant Escherichia coli harboring plasmid pHJ201 or pHJ202. When protease activity was measured in flask cultivation, produced protease levels of S. griseus HA and S. griseus HB increased about 5.3 times and 5 times, respectively, more than that of parent strain. And, the constructed integrating plasmid pHJ101 was applicable for overexpression of a certain gene in Streptomyces sp.

Effects of $\beta$-Mercaptoethanol and Hydrogen Peroxide on Enzymatic Conversion of Human Proinsulin to Insulin

  • Son, Young-Jin;Kim, Chang-Kyu;Choi, Byoung-Taek;Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.983-989
    • /
    • 2008
  • Human insulin is a hormone well-known to regulate the blood glucose level. Recombinant preproinsulin, a precursor of authentic insulin, is typically produced in E. coli as an inactive inclusion body, the solubilization of which needs the addition of reducing agents such as $\beta$-mercaptoethanol. To make authentic insulin, recombinant preproinsulin is modified enzymatically by trypsin and carboxypeptidase B. The effects of $\beta$-mercaptoethanol on the formation of human insulin derivatives were investigated in the enzymatic modification by using commercially available human proinsulin as a substrate. Addition of 1 mM $\beta$-mercaptoethanol induced the formation of various insulin derivatives. Among them, the second major one, impurity 3, was found to be identical to the insulin B chain fragment from $Phe_1$ to $Glu_{21}$. Minimization of the formation of insulin derivatives and concomitant improvement of the production yield of human insulin were achieved by the addition of hydrogen peroxide. Hydrogen peroxide bound with $\beta$-mercaptoethanol and thereby reduced the negative effects of $\beta$-mercaptoethanol considerably. Elimination of the impurity 3 and other derivatives by the addition of over 10 mM hydrogen peroxide in the presence of $\beta$-mercaptoethanolled to a 1.3-fold increase in the recovery efficiency of insulin, compared with those for the case without hydrogen peroxide. The positive effects of hydrogen peroxide were also confirmed with recombinant human preproinsulin expressed in recombinant E. coli as an inclusion body.

Purification and Characterization of the Bacteriocin Produced by Lactococcus sp. KD 28 Isolated from Kimchi (김치에서 분리한 Lactococcus lactis가 생산하는 박테리오신의 정제 및 특성)

  • Lee, Ji-Young;Choi, Nack-Shick;Chun, Sung-Sik;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • The bacterial strain isolated from Kimchi showed antibacterial activity against Micrococcus luteus IAM 1056. The selected strain was identified as Lactococcus lactis by 16S rRNA nucleotide sequence analysis and named as Lactococcus sp. KD 28. The treatment of culture supernatant with proteinase K removed antibacterial activity, indicating its proteinaceous nature, a bacteriocin. This bacteriocin was sensitive to hydrolytic enzymes such as ${\alpha}$-chymotrypsion, trypsin, proteinase K, lipase, ${\alpha}$-amylase and subtilisin A. The bacteriocin was highly thermostable and resistant to heating at $80^{\circ}C$ for up to an hour but 50 % of the total activity was remained at $100^{\circ}C$ for 30 min. The pH range from 2.0 to 8.0 had no effect on bacteriocin activity and it was not affected by solvents such as acetonitrile, isopropanol, methanol, chloroform and acetone up to 50% concentration. The bacteriocin showed antibacterial activity against M. luteus IAM 1056, Lactobacillus delbrueckii subsp. lactis KCTC 1058, Enterococcus faecium KCTC 3095, Bacillus cereus KCTC 1013, B. subtilis KCTC 1023, Listeria ivanovii subsp. ivanovii KCTC 3444, Staphylococcus aureus subsp. aureus KCTC 1916, B. megaterium KCTC 1098 and B. sphaericus KCTC 1184. The bacteriocin was purified through ammonium sulfate concentration, SP-Sepharose chromatography and RP-HPLC. The molecular weight was estimated to be about 3.4 kDa by tricine-SDS-PAGE analysis.