• Title/Summary/Keyword: carboxypeptidase E

Search Result 16, Processing Time 0.024 seconds

Development of E. coli Expression System to Overproduce a Harmful Protein, Carboxypeptidase Taq.

  • Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.108-110
    • /
    • 2001
  • The E. coli expression system to overproduce a harmful protein, carboxypeptidase Taq was developed. Since expression plasmid pCK305N containing the colicin promoter already has the initiation codon on the restriction site, the initiation codon of the CPase Taq gene was removed. Expression plasmid pCP4-col includes the entire CPase Taq gene, which is directed by the colicin promoter. E. coli cells harboring pCP-col produced a high amount of the enzyme when they were cultured in the present of mitomycin C (0.4 ${\mu}g$/ml). An amount of purified enzyme produced by pCP4-col directed by the colicin promoter was 10.5 mg. This result indicated that the novel E. coli expression system controlled by the colicin promoter could produce almost twice amounts of CPase Taq than the conventional system controlled by the tart promoter.

  • PDF

Carboxypeptidase E, Identified As a Direct Interactor of Growth Hormone, Is Important for Efficient Secretion of the Hormone

  • Mizutani, Akiko;Inoko, Hidetoshi;Tanaka, Masafumi
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.756-761
    • /
    • 2016
  • We have identified 88 interactor candidates for human growth hormone (GH) by the yeast two-hybrid assay. Among those, we focused our efforts on carboxypeptidase E (CPE), which has been thought to play a key role in sorting prohormones, such as pro-opiomelanocortin (POMC), to regulated secretory vesicles. We found that CPE colocalizes with and interacts with GH in AtT20 pituitary cells. Downregulation of CPE led to decreased levels of GH secretion, consistent with involvement of CPE in GH sorting/secretion. Our binding assay in vitro with bacterially expressed proteins suggested that GH directly interacts with CPE but in a manner different from POMC.

HIF-1α-Dependent Induction of Carboxypeptidase A4 and Carboxypeptidase E in Hypoxic Human Adipose-Derived Stem Cells

  • Moon, Yunwon;Moon, Ramhee;Roh, Hyunsoo;Chang, Soojeong;Lee, Seongyeol;Park, Hyunsung
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.945-952
    • /
    • 2020
  • Hypoxia induces the expression of several genes through the activation of a master transcription factor, hypoxia-inducible factor (HIF)-1α. This study shows that hypoxia strongly induced the expression of two carboxypeptidases (CP), CPA4 and CPE, in an HIF-1α-dependent manner. The hypoxic induction of CPA4 and CPE gene was accompanied by the recruitment of HIF-1α and upregulation in the active histone modification, H3K4me3, at their promoter regions. The hypoxic responsiveness of CPA4 and CPE genes was observed in human adipocytes, human adipose-derived stem cells, and human primary fibroblasts but not mouse primary adipocyte progenitor cells. CPA4 and CPE have been identified as secreted exopeptidases that degrade and process other secreted proteins and matrix proteins. This finding suggests that hypoxia changes the microenvironment of the obese hypoxic adipose tissue by inducing the expression of not only adipokines but also peptidases such as CPA4 and CPE.

In Vitro Formation of Active Carboxypeptidase Y from Pro-Carboxypeptidase Y Inclusion Bodies by Fed-Batch Operation

  • Hahm, Moon-Sun;Chung, Bong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.887-889
    • /
    • 2001
  • The gene encoding yeast pro-carboxypeptidase Y (pro-CPY) has been cloned and expressed in Escherichia coli. Most of the expressed pro-CPY was accumulated as cytoplasmic insoluble aggregates. In our previous study, active CPY was obtained by renaturation of entirely denatured pro-CPY followed by in vitro proteolytic processing with proteinase K along with the activation process. The same refolding process was performed to produce an active CPY from pro-CPY inclusion bodies with renaturation buffers containing proteinase K at different concentrations. The refolding efficiency decreased from $25\%\;to\;2\%$ in the renaturation buffers containing proteinase K at concentrations of $60{\mu}g/ml\;and\;0.6{\mu}g/mi$, respectively. In an attempt to increase the refolding efficiency with a lesser amount of proteinase K, a novel fed-batch refolding process was developed. In a fed-batch refolding, 99 ml of the renaturation buffer containing pro-CPY was gradually added into 1 ml of the renaturation buffer containing $60{\mu}g/ml$ of proteinase K to give a final proteinase K concentration of $0.6{\mu}g/ml$. The fed-batch refolding process resulted in a refolding efficiency of $18\%$, which corresponded to a 9-fold increase over that ($2\%$) in the batch process.

  • PDF

SNP Detection of Carboxypeptidase E Gene and Its Association with Meat Quality and Carcass Traits in Korean Cattle

  • Shin, S.C.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.328-333
    • /
    • 2007
  • Carboxypeptidase E (CPE) plays an important role in the regulation of the body fat content. Therefore, it has been suggested as candidate gene for traits related to meat quality in beef cattle. This study was conducted to identify single nucleotide polymorphisms (SNPs) in the CPE gene and to investigate association of SNP marker with carcass and meat quality traits in Korean cattle. Three SNPs were identified in the intron 4 (A309G SNP and C445T SNP) and exon 5 (C601T SNP) of the CPE gene by sequence analyses of CPE cDNA and genomic DNA samples. The sequences have been deposited in GenBank database with accession numbers AY970664 and AY970663. Genotyping of the gene-specific SNP marker was carried out using the PCR-RFLP with restriction enzymes DdeI for C445T SNP and NlaIII for C601T SNP. The frequencies of C and T alleles were 0.43 and 0.57 for C445T SNP and 0.42 and 0.58 for C601T SNP, respectively. Statistical analysis indicated that the C445T SNP showed a significant effect (p<0.05) on marbling score (MS) and breeding value of backfat thickness (BF-EBV), respectively. Animals with the CT genotype showed higher marbling score and backfat thickness than those with the TT genotype. This marker also showed a significant dominance effect for the MS and BF-EBV (p<0.05). However, no significant associations were observed between C601T SNP genotypes and all traits examined. The results suggest that the CPE gene may be used as a marker for carcass traits in Korean cattle.

Degradation of Bradykinin, a Cardioprotective Substance, during a Single Passage through Isolated Rat-Heart

  • Ahmad M.;Zeitlin I.J.;Parratt J.R.;Pitt A.R.
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2006
  • Angiotensin converting enzyme (ACE) inhibitors have cardioprotective effects in different species including human. This cardioprotective effect is mainly due to the inhibition of bradykinin (BK) degradation rather than inhibition of the conversion of angiotensin I to angiotensir. II. Bradykinin, a nonapeptide, has been considered to be the potential target for various enzymes including ACE, neutral endopeptidase 24.11, carboxypeptidase M, carboxypeptidase N, proline aminopeptidase, endopeptidase 24.15, and meprin. In the present study, the coronary vascular beds of Sprague Dawley rat isolated hearts were perfused (single passage) with Krebs solution alone or with different concentrations of BK i.e. $2.75{\times}10^{-10},\;10^{-7},\;10^{-6}\;and\;10^{-5}M$ solution. Percent degradation of BK was determined by radioimmunoassay. The degradation products of BK after passing through the isolated rat-hearts were determined using RP-HPLC and mass spectroscopy. All the four doses of BK significantly decreased the perfusion pressure during their passage through the hearts. The percentage degradation of all four doses was decreased as the concentration of drug was increased, implying saturation of a fixed number of active sites involved in BK degradation. Bradykinin during a single passage through the hearts degraded to give [1-7]-BK as the major metabolite, and [1-8]-BK as a minor metabolite, detected on HPLC. Mass spectroscopy not only confirmed the presence of these two metabolites but also detected traces of [1-5]-BK and arginine. These findings showed that primarily ACE is the major cardiac enzyme involved in the degradation of bradykinin during a single passage through the coronary vascular of bed the healthy rat heart, while carboxypeptidase M may have a minor role.

Carboxypeptidase E Is a Novel Modulator of RANKL-Induced Osteoclast Differentiation

  • Kim, Hyun-Ju;Hong, JungMin;Yoon, Hye-Jin;Yoon, Young-Ran;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.685-690
    • /
    • 2014
  • Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.

Development of an E. coli Expression Cassette for the Efficient Production of a Harmful Protein

  • Kim Ok Soo;Kwak Hwan Jong;Lee Jae-Hwa;Ha Jong Myung;Ha Bae-Jin;Lee Sang-Hyeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.389-392
    • /
    • 2004
  • In order to produce a harmful protein more efficiently, this expression cassette, dubbed pCol-MICT, is directed by the colicin promoter, and was constructed by the insertion of a $rrnBT_1T_2$ fragment of pEXP7, and a MxelnteinCBD fragment of pTXB3, into pSH375. To test whether harmful proteins, including proteolytic enzymes, could be effectively produced by this cassette, the carboxypeptidase (CPase) Taq gene was inserted into the pCol-MICT cassette to yield pCol-CPase Taq-MICT. E coli W3l 10 tells harboring pCol-CPase Taq-MICT produced a large quantity of this enzyme, as much as 47.2 mg of purified from per liter of culture, when cultured in the presence of mitomycin C ($0.4{\mu}g/mL$). This indicates that the colicin promoter-controlled E, coli expression cassette was able to produce almost 8 times of protein than the conventional tar promoter-based system, and that this cassette may be useful in the Synthesis of other harmful proteins.

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

BolA Affects Cell Growth, and Binds to the Promoters of Penicillin-Binding Proteins 5 and 6 and Regulates Their Expression

  • Guinote, Ines Batista;Matos, Rute Goncalves;Freire, Patrick;Arraiano, Cecilia Maria
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • The gene bolA was discovered in the 80's, but unraveling its function in the cell has proven to be a complex task. The BolA protein has pleiotropic effects over cell physiology, altering growth and morphology, inducing biofilm formation, and regulating the balance of several membrane proteins. Recently, BolA was shown to be a transcription factor by repressing the expression of the mreB gene. The present report shows that BolA is a transcriptional regulator of the dacA and dacC genes, thus regulating both DD-carboxypeptidases PBP5 and PBP6 and thereby demonstrating the versatility of BolA as a cellular regulator. In this work, we also demonstrate that reduction of cell growth and survival can be connected to the overexpression of the bolA gene in different E. coli backgrounds, particularly in the exponential growth phase. The most interesting finding is that overproduction of BolA affects bacterial growth differently depending on whether the cells were inoculated directly from a plate culture or from an overnight batch culture. This strengthens the idea that BolA can be engaged in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions.