• Title/Summary/Keyword: carboxymethylated

Search Result 24, Processing Time 0.023 seconds

Total Utilization of Woody Biomass by Steam Explosion(II) -The Preparation of Carboxymethylcellulose from Exploded Wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) biomass의 종합적(綜合的) 이용(利用)(II) -폭쇄재(爆碎材)로부터 Carboxymethyl cellulose의 제조(製造)-)

  • Han, Sang-Yeol;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 1994
  • Steam explosion process is one of the most efficient, pretreatment method for the utilization of lignocellulosic biomass. The carbxymethyl-cellulose(CMC) was prepared with steam exploded wood(EXW), pine(Pinus densiflora) and oak(Quercus mongolica), by standard method using isopropyl alcohol and monochloroacetic acid. The range of water solubility of carboxymethylated pine exploded wood was 45.2~66.8 % and those of oak was 60.7~84.7 %. The degree of substitution(D.S) of carboxymethylated pine exploded wood was 0.11~0.33 and oak exploded wood was 0.48~0.76. The color of carboxymethylated pine and oak exploded wood was brown-black. When carboxymethylated EXW was purified by sulfuric acid, the yield of carboxymethylated wood was lower than non-treated one. However, the color was still brown-black although after delignification. In carboxymethylated EXM prepared after delignification, the water solubility and degree of substitution(D.S) of pine were 81.4~95.9 % and 0.71~0.79, and those of oak were 76.2~89.5 % and 0.79~1.05. The values were higher than non-treated. The degree of substitution of purified carboxymethylated wood prepared with delignified EXM, pine and oak were 0.50~0.71 and 0.70~0.88. The color of carboxymethylated wood was white. In carboxymethylated wood preparde after delignification of EXM, swelling ratio and water retention value of pine were 95.9~96.5 and 580.0~751.2, those of oak were 76.2~89.5 and 124.3~307.6.

  • PDF

Development of High Functional Coating Agents for Pulp Mold (IV) - Manufacture of higher functional and biodegradable coating agents - (펄프몰드용 새로운 고기능 코팅제 제조기술개발(제4보) - 고기능 생분해성 코팅제 제조 -)

  • Kang Jin-Ha;Lim Hyun-A;Park Seong-Cheol
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.45-53
    • /
    • 2006
  • This study was carried out to produce high functional and biodegradable coating agents for pulp mold by evaluating various kinds of biodegradable polymers. Five kinds of biodegradable polymers were used. In addition, the mixture of the carboxymethylated starch and biodegradable polymers(${\kappa}$-carrageenan, chitosan) were used for mixed coating agents. Physical properties of coated paperboards were evaluated. Conclusions obtained were as follows. 4% ${\kappa}$-carrageenan and 5% chitosan showed higher water and oil resistance. 10% sodium alginate, 4% corn zein and 15% polycaprolactone showed high water resistance while no improvement was found on oil resistance. The optimum mixture ratios for the mixed coating agents were 90:10(carboxymethylated starch : ${\kappa}$-carrageenan) and 50:50(carboxymethylated starch : chitosan). Since these mixed coating agents have excellent biodegradability with higher water and oil resistance, these can be used for the environmental-friendly coating agents.

A Study on Chemical Modification of Papermaking Fibers (I) - Improved Physical Characteristics from Partial Carboxymethylated Pulps - (제지용(製紙用) 섬유(纖維)의 화학적(化學的) 개질(改質)에 관한 연구(硏究) (I) - Partial Carboxymethylation 처리에 의한 물성(物性) 향상(向上) -)

  • Choi, Jeong-Heon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.37-46
    • /
    • 1995
  • The substitution of carboxymethylated hydroxyl group in pulp revealed more hydrophilic than hydroxyl group. And then fibers were more flexible, swell more which leads to better conformation between fibers in turn this raise paper strength. In this paper, we tried to chemical modifyings of recycled fiber, OCCs(old corrugated containers). Many researchers have examined chemical modification of papermaking fiber by partial carboxymethylation(PCM) using a organic solvent processes. We made modified PCM processes adapted waters m replace of the organic solvent. Our testings for the optimum conditions on the new method, conditions as reaction time, temperature, liquor ratios were designed likely plant system. Freenesses(SR$^{\circ}$) were increased following on carboxyl content of the samples. Handsheets of untreated samples and partial carboxymethylated OCCs were made by optimum conditions on different concentrations of the reagent. As results, maximum 25% strength increasing effects were obtained by the new method.

  • PDF

Manufacturing of Enzyme Immobilized Sheet Using Carboxymethylated RMP Substrate (카르복시메틸화 RMP를 이용한 효소 고정화시트의 제조)

  • 조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.39-45
    • /
    • 2003
  • This study was performed to develop the new type enzyme immobilization sheet from carboxymethylated refiner mechanical pulp (CRMP) substrate. Enzyme immobilization was attempted to couple carboxyl groups of CRMP with amino groups of the enzyme, trypsin, through the reaction of carbodiimide reagent, 1-ethyl-3-(3-dimethyl aminopropyl)-carbodimide (EDC ). Immobilization carrier, water insoluble CRMP fraction (CRMP-IS), was successfully reacted with the enzyme, formed peptide linkage like -CONH- at 1680$cm^{-1}$ / and new ester linkage like -COO$CH_3$, methylester at 1735$cm^{-1}$ /, and produced enzyme immobilized substrate (CRMP-IST). The enzyme immobilized handsheet was prepared by mixing the above chelated enzyme immobilized substrate(CRMP-IST) with kraft pulp by paper sheet machine like papermaking process. The sheet weight and strength were increased with increasing dosage of CRMP-IST, and decreased at more than 10% mixing of CRMP-IST, but higher than the controls. Concerning activities of immobilized trypsin(CRMP-IST) sheet by caseinolysis, the teared-off sheet with shaking was shown higher enzyme activities than sheet shape without shaking. In conclusion, this enzyme immobilized sheet would be expected easy handling for practical application and reutilization.

Surface Modification of Cellulose Nanofibrils by Carboxymethylation and TEMPO-Mediated Oxidation (카르복시메틸화 및 TEMPO 촉매 산화 처리에 의한 셀룰로오스 나노피브릴의 표면 개질)

  • Sim, Kyujeong;Youn, Hye Jung;Jo, Yeonhee
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.42-52
    • /
    • 2015
  • In this study, cellulose nanofibrils (CNF) were modified through carboxymethylation or TEMPO-mediated oxidation and their effects on ionicity and characteristics of sheet, film, and foam were investigated. Carboxymethylation was carried out on pulp fibers as a pre-treatment before preparation of CNF. The gel-like and translucent CNF hydrogel was obtained by grinding of carboxymethylated cellulose fibers. Carboxymethylated CNF film and freeze dried sheet showed higher transparency than that of untreated CNF. The CNF sheet with high strength and the CNF foam without large ice crystals were obtained by using the carboxymethylated CNF. TEMPO-mediated oxidation was carried out as a post-treatment of CNF. The zeta potential and charge demand of TEMPO-oxidized CNF were increased with an increase in oxidation time and addition amount of NaClO. The density of sheet made of TEMPO oxidized CNF was increased with the amount of oxidizing agent. The TEMPO oxidized cellulose nanofiber (TOCN) which was obtained from supernatant after centrifugation could be converted to transparent film.

Characteristics of Carbozymethylated Substrates from Delignified Autohydrolyzed Substrates (탈리그닌한 자기가수분해 시료로부터 준비한 카복시메틸화 시료의 특성)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • This study was performed to evaluate the characteristics of the carboxymethylated substrate from high reactive autohydrolyzed cellulose (HRC) and those of commercial α-cellulose (CAC) and refiner mechanical pulp (RMP). Saccharification rates of HRC substrate were achieved over 70% with 12 hr hydrolysis, about 90% with 24 hr, and 99.5% with 72 hr. CMCase and avicelase activities of cellulase onozuka were 4.09 ㎛ G/mg·min and 14.0 ㎛ G/mg·min, respectively. There were no any significant changes in cellulase activities with this substrate. The saccharification rates of CAC and RMP were very low, 57% and 38% with 72 hr, respectively. Those lignin-zero autohydrolyzed substrates, HRC and CAC, were highly carboxymethylated at the high alkali concentration, near 30%, for 3 hr. reaction, and resulted in 1.13-1.15 of D.S., besides 0.85 of D.S. from RMP. Water solubilities of carboxymethylated substrates were increased with an increase of D.S., 98-98.5% from HRC and CAC and 31.5% from RMP. RMP which has low specific surface area showed lower water retention values, compared to high values of 435 and 321% from CAC and HRC, respectively. There were no direct relationship between surface area and swelling ratio of the substrates.