• 제목/요약/키워드: carbothermic

검색결과 24건 처리시간 0.019초

리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향 (The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review)

  • 유경근;허원화;김범중
    • 자원리싸이클링
    • /
    • 제33권2호
    • /
    • pp.24-36
    • /
    • 2024
  • 리튬이온전지 재활용 공정은 직접 재활용, 습식제련공정, 건식제련공정으로 분류되어 왔으며, 습식제련공정 기반 상용공정은 해체, 파분쇄, 열처리, 선별 등으로 구성된 전처리 공정으로 블랙매스를 생산하고 습식제련공정으로 각 금속을 회수한다. 개발 중인 모든 리튬이온전지 재활용공정은 전구체 원료 제조를 위해 전처리공정 후 침출 등의 습식제련공정을 진행하기 때문에 이 글에서는 재활용공정의 전처리공정에 따른 분류법을 제시하였다. 현재 개발 중인 주요 공정은 황산염배소, 탄소열환원, 합금제조 등이며, 전처리공정에서 미이용 부산물의 활용이 가능할 경우 리튬이온전지 재활용 공정의 경제성 향상이 가능하리라 판단된다.

Ar/Ar-$H_2$ 플라즈마에 의한 Nb금속제조와 Nb금속의 수소용해 (A Study on the Carbothermic Reduction of Nb-Oxide and the refining by Ar/Ar-$H_2$ plasma and Hydrogen solubility of Nb metal)

  • 정용석;홍진석;김문철;백홍구
    • 한국재료학회지
    • /
    • 제3권6호
    • /
    • pp.565-574
    • /
    • 1993
  • Ar/Ar-$H_{2}$ 플라즈마법으로 고순도 Nb금속을 환원 정련하였다. 또한, Ar-(20%)$H_{2}$플라즈마에서의 용융Nb금속과 수소간의 반응을 해석하였다. Ar플라즈마 환원에서는 $C/Nb_{2}O_{5}$=5.00의 비에서 99.5wt%의 금속 Nb을 얻었으며, 니오븀 산화물의 열분해에 의한 O/Sub 2/의 손실은 발생하지 않았다. Ar-(20%)$H_{2}$ 플라즈마에서는 $C/Nb_{2}O_{5}$=4.80의 비에서 99.8wt%의 금속 Nb을 제조하였다. 주된 탈산반응은 H, $H_{2}$와의 반응이었으며,$NbO_{x}$의 증발에 의한 탈산은 발생하지 않았으나, "splash"효과에 의해 Nb의 질량손실이 발생함을 관찰하였다. 탈산반응은 1차 반응속도론에 따랐으며, 탈산의 반응속도 상수(k')는 $7.8 \times 10_{-7}$(m/sec)였다. Ar-(20%)$H_{2}$ 플라즈마법에서 Nb금속 내의 수소 용해도는 60ppm으로 분자상태 수소의 용해도인 40ppm 보다 높았으며, 포화되는 시간은 60초 이내였다. 이를 다시 Ar 플라즈마로 처리함으로써 수소 함량을 10ppm 이하로 감소시킬 수 있었다.소시킬 수 있었다.

  • PDF

산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響) (Carbothermic Reduction of Zinc Oxide with Iron Oxide)

  • 김병수;박진태;김동식;유재민;이재천
    • 자원리싸이클링
    • /
    • 제15권4호
    • /
    • pp.44-51
    • /
    • 2006
  • 대부분 전기로 분진 처리공정은 전기로 분진으로부터 아연을 회수하기 위하여 전기로 분진에 함유된 산화아연의 환원제로 탄소를 사용한다. 본 연구에서는 산화아연의 탄소열환원반응에 관한 전기로 분진의 주성분 중의 하나인 산화철의 영향에 대하여 속도론적으로 조사되었다. 실험은 반응온도 1173 K-1373 K 범위에서 중량감량법을 이용하여 수행되었다. 실험결과, 적절한 량의 산화철 첨가는 산화아연의 탄소열환원반응 속도를 증진시키는 것으로 나타났다. 이것은 산화철이 산화아연의 탄소열환원반응에서 탄소의 gasification 반응을 촉진시키기 때문으로 관찰되었다. 표면화학반응이 율속인 shrinking core model 1173 - 1373 K 범위에서 고체 탄소에 의한 산화아연의 환원반응 속도 데이터를 분석하는데 유용한 것으로 분석되었다. ZnO-C 반응계에서 활성화 에너지는 224kJ/mol (53 kcal/nol)로, $ZnO-Fe_{2}O_{3}-C$ 반응계에서 활성화 에너지는 175kJ/mol(42kca1/mol)로 그리고 ZnO-밀스케일-C 반응계에서 활성화 에너지는 184 kJ/mol (44 kcal/mol)로 각각 계산되었다.

Ar/Ar-H2 플라즈마에 의한 V, Ta, B 산화물의 탄소용융환원 및 정련 (A Study on the Carbothermic Reduction and Refining of V, Ta and B Oxides by Ar/Ar-H2 Plasma)

  • 정용석;박병삼;홍진석;배청찬;김문철;백홍구
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.81-92
    • /
    • 1996
  • Ar/Ar-$H_{2}$ 플라즈마법으로 V, Ta, B산화물과 금속의 환원 및 정련을 행하였다. 다시말해 Ar 플라즈마에서의 고온환원반응 및 Ar-(20%)$H_{2}$ 플라즈마에서의 정련 반응에 대한 연구를 각각 수행하였다. Ar 플라즈마 환원에 의하여 $C/V_{2}O_{5}$=4.50의 비에서 순도 96wt%의 조금속 Vdmf 얻었고, 바나듐 산화물의 열분해에 의한 $O_{2}$의 손실로 인해 $C/V_{2}O_{5}$=4.50에서 최대환원도가 얻어졌다. Ar-(20%)$H_{2}$ 플라즈마 정련에서는 $C/V_{2}O_{5}$=4.40의 비에서 99.2wt%의 금속 V을 얻었고, 주된 정련반응은 잔류탄소와 잔류산소의 반응으로 판단된다. 금속 Ta은 Ar 플라즈마 환원에 의하여 $C/Ta_{2}O_{5}$=5.10의 비에서 99.8wt%가 얻어졌고, $Ta_{2}O_{5}$의 열분해에 의한 $O_{2}$ 손실은 발생하지 않았다. Ar-(20%)$H_{2}$ 플라즈마 정련시 탈산반응이 탈탄반응보다 현저했으며, $C/Ta_{2}O_{5}$비가 4.50-5.10의 범위에서 99.9wt%의 금속 Ta을 제조하였다. 이 비에서는 탈산반응에 의한 잔류산소의 감소로 Ta외 Vickers 경도가 약 220Hv였다. 한편, Ar 및 Ar-$H_{2}$ 플라즈마에 의한 $B_{2}O_{3}$의 환원에는 C이 환원제로서 적합하지 않았으나, Fe원 소재와 C, $B_{2}O_{3}$ 및 페로보론을 고주파 유도 용해하였을 때 용강중에서의 $B_{2}O_{3}$의 환원으로 Fe-B-Si 합금을 얻었다.

  • PDF