• Title/Summary/Keyword: carbonized rice-husks

Search Result 7, Processing Time 0.019 seconds

Production of Carbonized Rice Husks by a Cyclone Combustor(I) (사이클론 연소기를 이용한 탄화왕겨의 제조(I))

  • 고길표;노수영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • Carbonized rice husk(char from rice husk) can be used to improve soils for planting, seedlings, horiculture, pomiculture and truck gardening. Although it is not a fertilizer in nature, it stimulates the growth of plants. Carbonized rice husk is highly recommended for raising soil/water temperature, keeping moisture and aerating roots of plants. The objective of this study was to develop the effective production method of carbonized rice husks by a non-slagging vertical cyclone combustor. A cyclone combustor w vortex collecor Pocket in addition to central collector pocket was selected and tested. Isothermal tests and mixed firing with LPG and rice husk were performed in order to characterize the system. hut rice husk was used during the isothermal test to find the mass collected of rice husk. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. The composition of original and carbonized rice husks was analyzed by the ultimate analysis. With the air flow rate of 20 ㎥/h, LPG flow rate of 0.45 1/min, the required carbonized rice husk could be obtained.

  • PDF

A Study on The Strength Properties of Board Using The Carbonized Rice Husks to Develop a Structural Insulation (구조용 단열재 개발을 위한 왕겨숯 보드의 강도적 성질에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.511-518
    • /
    • 2017
  • In recent years, many interests and researches on the insulations required the multiple performances other than insulation performance. The purpose of this paper is to find the optimal ratio between wood fiber and rice-husks charcoal to develop a structural board with carbonized rice-husks. Based on these rice-husks charcoals, basic research was carried out to develop thermal insulation materials with structural performance, and the following conclusions were obtained. The MC of the board using the carbonized rice-husks was 3.2-4.1% and the density was 0.58-0.68, indicating the possibility of excellent structural material. The bending strength was 9.1-32.6 MPa in the length direction and 9.2-34.1 MPa in the width direction. It is possible to obtain the bending strength of the normally used MDF level and to find the possibility of development of the thermal insulation material having the structural performances.

Effects of application rate and pH of carbonized rice husk on the reduction of NH3 volatilization and soil quality

  • Yun-Gu Kang;Jae-Han Lee;Jun-Yeong Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.273-281
    • /
    • 2023
  • Ammonia (NH3) emitted from the use of fertilizers during agricultural practice generates particulate matter and odors. The application of carbonized rice husk, an eco-friendly material, is one of the measures used to reduce NH3. The objective of this study was to evaluate the effect of the application rate and pH of carbonized rice husk on NH3 emissions and soil quality. An experiment to assess NH3 emissions was performed in a glasshouse using a static chamber method. The pH of the carbonized rice husk was divided into acidic, neutral, and basic groups, and the carbonized rice husk application rates were 1, 3, and 5% of the soil weight. NH3 emissions showed a sharp increase within three days after the inorganic fertilizer was applied. Subsequently, NH3 emissions decreased rapidly after basal fertilization compared to primary and secondary top-dressing. When carbonized rice husks were applied to soil, NH3 emissions decreased in all treatments, and neutral carbonized rice husk was the most effective in comparison with acidic and basic carbonized rice husk. The application rate of carbonized rice husk and NH3 emissions showed a negative correlation, and the lowest emissions were found in units with a 5% application rate. Also, there was no statistically significant difference between NH3 emissions according to the application rate of carbonized rice husk, and when carbonized rice husks were applied at a 5% rate, soil OM increased excessively. Therefore, it is recommended to apply only 1% neutral carbonized rice husk to most effectively reduce NH3 emissions in the soil.

SiC powders synthesized from rice husk (왕겨로부터 합성된 탄화규소 분말)

  • Park, Tae-Eon;Hwang, Jun Yeon;Lim, Jin Seong;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.188-192
    • /
    • 2016
  • In this work, the SiC powders were synthesized through the carbonized matter from the mixture of silica powder and rice husks. The SiC powders, obtained from the carbothermal reduction reaction of silica and carbonized rice husks, were investigated by XRD patterns, XPS, FE-SEM and FE-TEM. In the XRD patterns, the specimens showed clearly very high strong peak of (111) plane near $35^{\circ}$ as well as weak (220) and (311) peak respectively at approximately $60^{\circ}$ and $72^{\circ}$. Under Ar atmosphere, the power synthesized from the mixture (in case of mixing ratio, 6 : 4) of carbonized rice husks and silica showed mainly cubic SiC crystalline phase showing relatively lower ratio of hexagonal phase without residual carbon in XRD pattern. In the TEM analysis, the specimen, synthesized from carbonized rice husks and silica with mixing ratio of 6 : 4 under Ar atmosphere, showed relatively fine particles under $5{\mu}m$ and a crystalline SiC phase of (100) diffraction pattern.

SiC aggregates synthesized from carbonized rice husks, paper sludge, coffee grounds, and silica powder (탄화왕겨, 제지슬러지, 커피찌거기 및 실리카 혼합물로부터 탄화규소 결정체 합성)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Relatively fine silicon carbide (SiC) crystalline aggregates have been synthesized with the carbonized rice husks, paper sludge, coffee grounds as the carbon sources and the silica powder. The main reaction source to obtain silicon carbide (SiC) aggregates from the mixture of carbon sources and silica was inferred as the gaseous silicon monoxide (SiO) phase, being created from this mixture through the carbothermal reduction reaction. The silicon carbide (SiC) crystalline aggregates, fabricated from the carbonized rice husks and paper sludge, coffee grounds and silica ($SiO_2$) powder, were investigated by XRD patterns, FE-SEM and FE-TEM images. In these specimens, obtained from the carbonized rice husks, paper sludge and silica, XRD patterns showed rather high strong peak of (111) plane near $35^{\circ}$. The FE-TEM images and patterns of specimens, synthesized from carbonized rice husks, paper sludge, coffee grounds and silica under Ar atmosphere, showed relatively fine particles under $1{\mu}m$ and crystalline peak (110) of silicon carbide (SiC) diffraction pattern.

Production of Carbonized Rice Husk by a Cyclone Combustor (III) (사이클론 연소기를 이용한 탄화왕겨의 제조 (III))

  • 김원태;노수영
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.187-194
    • /
    • 2000
  • One of effective utilization technique of rice husk is known to carbonize it for using as the culture materials. A series of study on the production of carbonized rice husk by a cyclone combustor shows that the carbonized rice husk produced have a strong alkalinity. Therefore, carbonized rice husk produced by a cyclone combustor is required to neutralize with proper normality. This work is the third part of a series on the production of carbonized rice husk by a cyclone combustor. In this work, the development of neutralization process was carried out in the range of experimental conditions recommended in the previous study. Those include the preheat temperature of combustion chamber of T1b=1273∼1373K, equivalence ratio =1.68∼2.17, auxiliary gas flow rates Qg=5.15∼6.43$\ell$/min. The injection technique of dilute acid was employed for neutralization. At the lower position of the outside of combustor, a dilute nitric acid selected as neutralization liquid was injected to the carbonized rice husk exhausted from the combustion chamber. The normalities of dilute nitric acid were varied to 0.01, 0.03 and 0.05N, respectively. The injection flow rates of the solution were changes from 1.7∼4$\ell$/min. The required carbonized and neutralized rice husk could be obtained at the dilute nitric acid with normality of 0.3N and flow rate of dilute nitric acid of 2∼3.5$\ell$/min. However, the carbonized and neutralized rice husks of about 10∼20% were destroyed by spray with high injection pressure.

  • PDF

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung;Moon, Jung-In;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.321-327
    • /
    • 2012
  • The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).