• Title/Summary/Keyword: carbonate mineral

Search Result 247, Processing Time 0.028 seconds

A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.443-455
    • /
    • 2017
  • This article provides an exclusive overview of the synthesized aragonite precipitated calcium carbonate and its applications in various fields. The last decade has seen a steady increase in the number of publications describing the synthesis, characterization and applications of calcium carbonate morphologies. Mainly, two kinds of processes have been developed for the synthesis of aragonite precipitated calcium carbonate under controlled temperature, concentrations and aging, and the final product is single-phase needle-like aragonite precipitated calcium carbonate formed. This review is mainly focused on the history of developed methods for synthesizing aragonite PCC, crystal growth mechanisms and carbonation kinetics. Carbonation is an economic, simple and ecofriendly process. Aragonite PCC is a new kind of functional filler in the paper and plastic industries, nowadays; aragonite PCC synthesis is the most exciting and important industrial application due to numerous attractive properties. This paper describes the aragonite PCC synthetic approaches and discusses some properties and applications.

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Non-isothermal Behavior of Calcium Carbonate (탄산칼슘의 비등온 열적거동)

  • Sohn, Yong-Un;Lim, Jae-Won;Choi, Good-Sun
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.167-172
    • /
    • 2009
  • This study has been carried out to investigate the non-isothermal behaviors and kinetic parameter of calcium carbonate by different thermal analysis methods. At the heating rate of $10^{\circ}C$/min, the onset calcination temperature, the peak and final temperatures of calcium carbonate were $612^{\circ}C$, $748^{\circ}C$, and $890^{\circ}C$ respectively. As the heating rate of the calcium carbonate increased from $5^{\circ}C$/min to $20^{\circ}C$/min, the peak temperature increased from $719^{\circ}C$ to $782^{\circ}C$. The activation energies of the calcium carbonate calculated by the methods of Kissinger and Freeman-Carroll were 40.15 kcal/mol and 43.47 kcal/mol, respectively.

Crystallization of Neodymium carbonate from Neodymium Chloride Solution (염화네오디뮴 수용액으로부터 탄산네오디뮴 결정화)

  • Kim, Chul-Joo;Yoon, Ho-Sung;Kim, Joon-Soo;Lee, Seung-Won
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.23-31
    • /
    • 2007
  • In this study, the crystallization of neodymium carbonate from neodymium chloride solution by addition of ammonium bicarbonate was investigated. The concentration of reactants such as neodymium chloride and ammonium bicarbonate, and reaction temperature play an important part in order to obtain the crystal of neodymium carbonate. It seemed that amorphous neodymium carbonate was prepared by aggregation of primary particles formed through nucleation. If reaction rate was increased by increasing the concentration of reactants and reaction temperature, then neodymium carbonate crystal could be obtained. Lanthanite-type neodymium carbonate[$Nd_2(CO_3)_3{\cdot}8H_2O$] and tengerite-type neodymium carbonate[$Nd_2(CO_3)_3{\cdot}2.5H_2O$] could be obtained with reaction renditions. Lanthanite-type neodymium carbonate was sensitive to temperature. The thermal decomposition of neodymium carbonate contained the processes or dehydration, decarbonation and crystalization of $Nd_2O_3$. The shape of lanthanite-type neodymium carbonate was irregular lump type, and tengerite-type neodymium carbonate had the shape of needle type. The shape of $Nd_2O_3$ was affected by the shape of neodymium carbonate.

Preparation of Needle like Aragonite Precipitated Calcium Carbonate (PCC) from Dolomite by Carbonation Method

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In this paper, we have developed a simple, new and economical carbonation method to synthesize a pure form of aragonite needles using dolomite raw materials. The obtained aragonite Precipitated Calcium Carbonate (PCC) was characterized by XRD and SEM, for the measurement of morphology, particle size, and aspect ratio (ratio of length to diameter of the particles). The synthesis of aragonite PCC involves two steps. At first, after calcinated dolomite fine powder was dissolved in water for hydration, the hydrated solution was mixed with aqueous solution of magnesium chloride at $80^{\circ}C$, and then $CO_2$ was bubbled into the suspension for 3 h to produce aragonite PCC. Finally, aragonite type precipitated calcium carbonate can be synthesized from natural dolomite via a simple carbonation process, yielding product with average particle size of $30-40{\mu}m$.

Crystallization of cerium carbonate from cerium chloride solution (염화(鹽貨)세륨 수용액(水溶液)으로부터 탄산(炭酸)세륨 결정화(結晶化) 특성(特性) 고찰(考察))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.10-16
    • /
    • 2008
  • In this study, the crystallization of cerium carbonate from cerium chloride solution by addition of ammonium bicarbonate was investigated. The concentration of reactants such as cerium chloride(0.5-2M) and ammonium bicarbonate, and reaction temperature($20-60^{\circ}C$) have a great effect on the crystal types of cerium carbonate such as lanthanite-type cerium carbonate[$Ce_2(CO_3)_3{\cdot}8H_2O$] and tengerite-type cerium carbonate[$Ce_2(CO_3)_3{\cdot}2.5H_2O$]. The crystallinity of cerium carbonate changed from lanthanite to tengerite as the concentration of reactants and reaction temperature increased. Transformation of cerium carbonate hydrate was transformed to cerium hydroxy carbonate depended on the drying conditions. Cerium carbonate of lanthanite and tengerite has the shape of aggregates with plate type crystal, and the size of lanthanite and tengerite crystal was $3{\mu}m$ and $5{\mu}m$, respectively. Cerium hydroxy carbonate has the shape of aggregates with needle type crystal, and the crystal size was about $7{\mu}m$.

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.222-226
    • /
    • 2016
  • The synthesis of pure calcium carbonate nanocrystals was achieved using a simultaneous injection method to produce nano particles of uniform size. These were characterized using scanning electron microscopy and powder X-ray diffraction. The nano particles were needle-shaped aragonite polymorphs, approximately 100-200 nm in length. The aragonite polymorph of calcium carbonate was prepared using aqueous solutions of $CaCl_2$ and $Na_2CO_3$, which were injected simultaneously into double distilled water at $50^{\circ}C$ and then allowed to react for 1.5 h. The resulting whisker-type nano aragonite with high aspect ratio (30) is biocompatible and potentially suitable for applications in light weight plastics, as well as in the medical, pharmaceutical, cosmetic and paint industries.

Extraction of Precipitated Calcium Carbonate from Oyster Shell waste and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, we reported that the influence of advanced functional mineral filler calcium carbonate ($CaCO_3$) extracted from oyster shell waste, which are rich mineral sources of $CaCO_3$. Oyster Shells, available in abundance, have no eminent use and are commonly regarded as waste. Their improper disposal causes a significant level of environmental concern and also results in a waste of natural resources. Recycling shell waste could potentially eliminate the disposal problem, and also turn an otherwise useless waste into high value added products. Oyster shell waste calcination process to produce pure lime (CaO) which have good anti-microbial property for waste water treatment and then focuses on its current applications to treat the coffee waste and its effluents for biological treatment and utilization as a fertilizers.

Synthesis of Ultrafine Calcium Carbonate powders by nozzle Spouting Method (분사법에 의한 초미립 경질 탄산 칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1276-1284
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of 0.05~0.1 ${\mu}{\textrm}{m}$ and the calcite phase were prepared by the nozzle spouting method which was conducted by spouting calcium hydroxide slurry in reactor filled with CO2 gas. Well dispersed ultra-fine particles were synthesized in condition of high Ca(OH)2 concentration of the slurry ( 0.5wt%) synthesized calcium carbonate powder was shown the large particle size with agglo-meration.

  • PDF