• Title/Summary/Keyword: carbon-ray treatment

Search Result 197, Processing Time 0.025 seconds

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma (RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

The Hydration Characteristics of High-Durable Portland Cement Treated with Asphalt and Carbon Black (ASPHALT와 CARBON BLACK으로 처리(處理)된 고내구성(高耐久性) 포틀랜드시멘트의 수화특성(水化特性))

  • Cho, Heon-Young;Kim, Hee-Rack;Hong, Won-Pyo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.148-155
    • /
    • 1992
  • For the enhancement of the concrete durability, we developed high - durable portland cement (ACTPC) by physical treatment of ordinary portland cement with asphalt and carbon black. In this research, the hydration reaction characteristics of ACTPC were studied by using SEM, X-Ray, Conduction Micro Calolimeter etc. When the ACTPC is mixed with water, it is believed the asphalt films on cement particles suppress the early stage of hydration reactions of cements, because the films hinder the contact with water and the elusion of soluble ions from particles. But the carbon blacks on the cement particles accelerated the hydration reactions of cement after a while, because the micro particles can be used as seed crystals in $CaO-SiO_2-H_2O$ gel formation.

  • PDF

Study of Stabilization Process of PAN Precursor and its Characteristics Change by Plasma Treatment (플라즈마 처리 방법을 이용한 PAN 전구체 특성 변화 연구)

  • Kang, Hyo-Kyoung;Kim, Jung-Yeon;Kim, Hak-Yong;Choi, Yeong-Og
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Commercialized carbon fiber obtained from polyacrylonitrile(PAN) precursor is subjected to oxidation stabilization at 180 to 300℃ in air atmosphere and carbonization process at 1600℃ or lower in inert gas atmosphere. Both of these processes use a lot of time and high energy, but are essential and important for producing high-performance carbon fibers. Therefore, in recent years, an alternative stabilization technology by being assisted with various other energy sources such as plasma, electron beam and microwave which can shorten the process time and lower energy consumption has been studied. In this study, the PAN precursor was stabilized by using plasma treatment and heat treatment continuously. The morphology, structural changes, thermal and physical properties were analyzed using Field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR), Thermogravimetric analysis(TGA) and Favimat.

Influence of oxyfluorination on activated carbon nanofibers for CO2 storage

  • Bai, Byong-Chol;Kim, Jong-Gu;Im, Ji-Sun;Jung, Sang-Chul;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.236-242
    • /
    • 2011
  • The oxyfluorination effects of activated carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Electrospun CFs were prepared from a polyacrylonitrile/N,N-dimethylformamide solution via electrospinning and heat treatment. The electrospun CFs were chemically activated in order to generate the pore structure, and then oxyfluorination was used to modify the surface. The samples were labeled CF (electrospun CF), ACF (activated CF), OFACF-1 ($O_2:F_2$ = 7:3), OFACF-2 ($O_2:F_2$ = 5:5) and OFACF-3 ($O_2:F_2$ = 3:7). The functional group of OFACFs was investigated using X-ray photoelectron spectroscopy analysis. The C-F bonds formed on surface of ACFs. The intensities of the C-O peaks increased after oxyfluorination and increased the oxygen content in the reaction gas. The specific surface area, pore volume and pore size of OFACFs were calculated by the Brunauer-Emmett-Teller and density functional theory equation. Through the $N_2$ adsorption isotherm, the specific surface area and pore volume slightly decreased as a result of oxyfluorination treatment. Nevertheless, the $CO_2$ adsorption efficiency of oxyfluorinated ACF improved around 16 wt% due to the semi-ionic interaction effect of surface modificated oxygen functional groups and $CO_2$ molecules.

Electro-chemical Removal Properties of Water Pollutants by Ag-ACF from Piggery Waste

  • Oh, Won-Chun;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The electro-chemical removal (ECR) of water pollutants by metal-ACF electrodes from wastewater was investigated over wide range of ECR time. The ECR capacities of metallic ACF electrodes were related to physical properties such as adsorption isotherm, surface area and pore size and to reaction time. Surface morphologies and elemental analysis for the metal supported ACFs after electro-catalytic reaction were investigated by scanning electron microscopy (SEM) and energy disperse X-ray (EDX) to explain the changes in adsorption properties. The IR spectra of metallic ACFs for the investigation of functional groups show that the electro-catalytic treatment is consequently associated with the removal of pollutants with the increasing surface reactivity of the activated carbon fibers. The metal-ACFs were electro-catalytically reacted to waste water to investigate the removal efficiency for the COD, T-N, $NH_4$-N, $NO_3$-N and $NO_2$-N. From these removal results of the piggery waste using metallic ACFs substrate, satisfactory removal performance was achieved. The removal efficiency of the metallic ACFs substrate was mainly determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

Photocatalytic activities and surface properties of e-beam treated carbon paper deposited $TiO_2$ using Atomic Layer Deposition (ALD)

  • Kim, Myoung-Joo;Seo, Hyun-Ook;Luo, Yuan;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.345-345
    • /
    • 2010
  • Thin film of $TiO_2$ deposited on carbon paper was fabricated by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. In this work, the photocatalytic activities of $TiO_2$ films with and without e-beam treatment were compared. The samples were treated by e-beam using e-beam energy of 1MeV and exposure range between 5 and 15kGy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyleneblue (MB) under UV irradiation (365nm) at room temperature using an UV-vis spectroscopy. The surface properties were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The sample treated by the low radiation dose has more catalytic activity than other ones. SEM images show that the high radiation dose caused the $TiO_2$ to aggregation on carbon paper. Due to the aggregation of $TiO_2$, the partially exposed carbon paper was oxidized.

  • PDF

Preparation and Photonic Properties of CNT/TiO2 Composites Derived from MWCNT and Organic Titanium Compounds

  • Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.234-241
    • /
    • 2009
  • In this study, CNT/$TiO_2$ composites derived from various titanium alkoxides and multiwalled carbon nanotubes (MWCNTs) were synthesized and characterized. Surface areas and pore volumes of the CNT/$TiO_2$ samples showed catastrophic decrease due to deposition of titanium compounds. Scanning electron microscopy (SEM) results indicated that the MWCNTs were homogenously decorated and well-dispersed onto/into the composites without apparent agglomeration of $TiO_2$ particles. In the X-ray diffraction (XRD) patterns, peaks of anatase and rutile phase were observed. The energy dispersive X-ray spectroscopy (EDX) spectra revealed the presence of major elements such as C and O with strong Ti peaks. According to the photocatalytic results, MB removal by a treatment with CNT/$TiO_2$ composites seems to have an excellent removal effect as order of CTIP, CTNB and CTPP composites due to a photolysis of the supported $TiO_2$, the radical reaction and the adsorptivity and absorptivity of the MWCNTs.

Electro-catalytic Performance of PtRu Catalysts Supported on Urea-treated MWNTs for Methanol Oxidation

  • Park, Jeong-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.159-159
    • /
    • 2009
  • In this work, nitrogen and oxygen functionalities was introduced to the graphite nanofibers (GNFs) and their effect on electrocatalytic performance of the GNF supports for direct methanol fuel cells (DMFCs) was invesigated. The nitrogen and oxygen groups were introduced through the urea treatments and acid treatment, respectively. And, PtRu catalysts deposited on modified GNFs were prepared by a chemical reduction method. The catalysts were characterized by means of elemental analysis, nitrogen adsorption, and X-ray photoelectron spetroscopy (XPS). The structure and morphological characteristics of the catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). As a result, the Pt-Ru nanoparticles were impregnated on GNFs with good formation in 3-5 nm. And, the cyclic voltammograms for methanol oxidation revealed that the methanol oxidation peak varied depending on changes of surface functional groups. It was thus considered that the PtRu deposition was related to the reduction of PtRu and surface characteristics of the carbon supports. The changes of surface functional groups were related to PtRu reduction, significantly affect the methanol oxidation activity of anode electrocatalysts in DMFCs.

  • PDF

Physicochemical Characteristics of Zeolite Mineral by Alkali Solution Treatment (알칼리 처리에 의한 Zeolite 광물의 물리화학적 특성)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • The effect of sodium hydroxide treatment on some physicochemical properties of zeolite mordenite mineral was studied with chemical analyses, powder X-ray diffraction, thermal analyses, infrared analysis, measurement of carbon dioxide adsorption and gas chromatography. Mordenite mineral from tuffaceous rocks in Yeongil and Wolsung area was used as a starting material and treated with 0.1-5N NaOH aqueous solution at about $95^{\circ}C$ in the water bath for three hours.At the concentration of sodium hydroxide below 0.5N, all chemical compositions in the tuff were virtually insoluble and the mordenite structure did not change. At the concentration above 1N, the chemical compositions such as silica, alumina, etc., were dissolved. The dissolution ratio of silica was lager than that of alumina, and the ratio of silica to alumina in the tuff decreased sharply in the concentration range of 2 to 3N. Intensity of X-ray diffraction peak of mordenite (202) plane and the adsorbed amount of carbon dioxide also decreased with the increasing concentration of sodium hydroxide above 1N. These decreases corresponded to the degree of mordenite structure collapsed.The separation of gas chromatography of nitrogen, oxygen and carbon monoxide was not affected by the sodium hydroxide treatment, but elution peaks of methane and krypton tended to be broadened and their retention time was shortened. The elution peaks of both methane and krypton tended to be overlapped with those of nitrogen and oxygen.

  • PDF

Efficacy of plasma treatment for surface cleansing and osseointegration of sandblasted and acid-etched titanium implants

  • Gang-Ho Bae;Won-Tak Cho;Jong-Ho Lee;Jung-Bo Huh
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.3
    • /
    • pp.189-199
    • /
    • 2024
  • PURPOSE. This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS. For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS. In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION. Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.