Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
Advances in nano research
/
v.16
no.3
/
pp.289-301
/
2024
In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.
This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.
Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
Computers and Concrete
/
v.32
no.1
/
pp.75-85
/
2023
This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.
In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.
Hadji, Lazreg;Zouatnia, Nafissa;Meziane, Mohamed Ait Amar;Kassoul, Amar
Earthquakes and Structures
/
v.13
no.5
/
pp.509-518
/
2017
The objective of the present paper is to investigate the bending behavior with stretching effect of carbon nanotube-reinforced composite (CNTRC) beams. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of bending analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the bending responses of CNTRC beam are discussed.
Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.
This study deals with buckling analysis with stretching effect of functionally graded carbon nanotube-reinforced composite beams resting on an elastic foundation. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of buckling analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the buckling responses of CNTRC beam are discussed.
In the present paper, the influences of the variation of exponent of volume fraction of carbon nanotubes (CNTs) on the natural frequencies (NFs) of the carbon nanotube-reinforced composite (CNTRC) beams under four different boundary conditions (BCs) are investigated. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned and dispersed in a polymeric matrix with various reinforcing patterns, according to the variation of exponent of volume fraction of CNTs for functionally graded (FG) reinforcements. Besides, uniform distribution (UD) of reinforcement is also considered to analyze the influence of the non-linear (NL) variation of the reinforcement of CNTs. Using Hamilton's principle and third-order shear deformation theory (TSDT), the equations of motion of the CNTRC beam are derived. Under four different BCs, the resulting equations are solved analytically. To verify the present formulation, comparison investigations are conducted. To examine the impacts of several factors on the NFs of the CNTRC beams, numerical examples and some benchmark results are presented.
Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
Steel and Composite Structures
/
v.30
no.6
/
pp.493-516
/
2019
This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.
Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.