• Title/Summary/Keyword: carbon-free hydrogen production

Search Result 27, Processing Time 0.027 seconds

Development of Mixed Conducting Ceramic Membrane for High Purity Hydrogen and Carbon Production from Methane Direct Cracking (복합전도성 세라믹 분리막의 탄화수소 직접분해에 의한 고순도 수소와 탄소 제조)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.649-655
    • /
    • 2011
  • Methane direct cracking can be utilized to produce $CO_x$ and $NO_x$-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. We present the results of a systematic study of methane direct cracking using a mixed conducting oxide, Y-doped $BaZrO_3$ ($BaZr_{0.85}Y_{0.15}O_3$), membrane. In this paper, dense $BaZr_{0.85}Y_{0.15}O_3$ membrane with disk shape was successfully sintered at $1400^{\circ}C$ with a relative density of more 93% via addition of 1 wt% ZnO. The ($BaZr_{0.85}Y_{0.15}O_3$) membrane is covered with Pd as catalyst for methane decomposition with an DC magnetron sputtering method. Reaction temperature was $800^{\circ}C$ and high purity methane as reactant was employed to membrane side with 1.5 bar pressure. The $H_2$ produced by the reaction was transported through mixed conducting oxide membrane to the outer side. In addition, it was observed that the carbon, by-product, after methane direct cracking was deposited on the Pd/ZnO-$BaZr_{0.85}Y_{0.15}O_3$ membrane. The produced carbon has a shape of sphere and nanosheet, and a particle size of 80 to 100 nm.

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Nam, Woo-Seok;Jung, Jae-Uk;Yoon, Ki-June;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.388-391
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2-free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor The propane decomposition rate used carbon black DCC-N330, Hi-900L as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600-800^{\circ}C$, propane gas velocity of $1.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature on the reaction rates was investigated. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition (가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조)

  • Seo, Hyung-Jae;Lee, Seung-Chul;Lee, Gang-In;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yun, Ki-Jun;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

Application of Thermal Plasma for Production of Hydrogen and Carbon Black from Direct Decomposition of Hydrocarbon (탄화수소의 직접분해로부터 수소와 카본블랙을 생성하기 위한 열플라즈마의 응용)

  • Lee, Tae-Uk;Nam, Won-Ki;Baeck, Sung-Hyeon;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2007
  • Direct decomposition of hydrocarbon (methane, propane) was studied using a thermal plasma to produce high purity hydrogen and carbon black. Thermodynamic equilibrium compositions were calculated based on the minimization of Gibb's free energy, and decomposition experiments were performed on the basis of calculation results. The purity of hydrogen was found to be depended strongly on the flow rate of hydrocarbon. The decomposition conditions for high purity hydrogen were investigated. The purity of hydrogen produced from methane decomposition was higher than that from propane. In the case of propane, it was investigated that by products such as methane, acetylene, and ethane etc., by radical recombination under thermal plasma were produced more than that of methane. Produced carbon blacks were characterized by material analyses, such as XRD, Raman spectroscopy, SEM, and particle size analysis. In both methane and propane decompositions, well-crystallized carbon blacks were produced and showed uniform and sphere-like morphologies. The size of carbon black synthesized from methane was observed to be smaller than that from propane.

Perspective: Analysis of Conditions for High-efficiency/Eco-friendly Energy Production Devices for Smart Cities (스마트시티용 고효율/친환경 에너지생산장치의 조건 분석)

  • Sang Wook Kang;Jeong Uk Kim
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.46-51
    • /
    • 2023
  • The purpose of this study is to analyze the utilization forms of hydrogen fuel cells, which are the core of building a smart city, and suggest ways to solve them. In the case of power plants to utilize hydrogen fuel cell, it was analyzed as the most promising form of use in the future due to the advantage of being free from intermittence problems. However, despite many advantages, local residents' opposition continues to emerge due to concerns about explosions and the problem of carbon dioxide generation in the case of certain hydrogen production methods, and it is analyzed that resolving them will be the main key to establishing the smart city. Finally, by analyzing the current hydrogen production method and identifying the problems facing it, the solution for the complete construction of the smart city was presented.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

Hydrogen Production by Pyrolysis of Natural Gas : Thermodynamic Analysis (천연가스 열분해에 의한 수소 생산 : 열역학적 해석)

  • Yoon, Y.H.;Park, N.K.;Chang, W.C.;Lee, T.J.;Hur, T.;Lee, B.G.;Baek, Y.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Methane can be converted directly to hydrogen by pyrolysis. The reaction is highly endothemic and heat must be supplied at high temperatures. Gibbs free energy minimization calculations have been carried out for the methane pyrolysis to determine equilibrium products. The calculation parameters are the temperature, the initial H/C ratio, the pressure and Gibbs energies of each substance. Methane, ethylene, acetylene, benzene, naphthalene, and hydrogen are the main products. Excluding hydrogen, it is observed that ethylene and aromatics(benzene+naphthalene) are predominant products below 1400K, whereas acetylene is significantly formed above 1400K. Hydrogen dilution increases the selectivities for ethylene and acetylene and decreases the selectivity for aromatics. Increasing the pressure also decreases the decomposition of methane.