• Title/Summary/Keyword: carbon-free fuel

Search Result 52, Processing Time 0.026 seconds

Experiment of CO Cleaning Process in DME Autothermal Reformate Gas for PEMFC Application (고분자 전해질 연료전지 적용을 위한 DME 자열개질가스 내 CO제거 공정 특성 연구)

  • Choi, Seung-Hyeon;Bae, Joong-Myeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.474-480
    • /
    • 2011
  • Hydrocarbon is required to be converted to pure hydrogen without carbon monooxide (CO) for polymer exchange membran fuel cell (PEMFC) applications. In this paper, CO cleaning processes as the downstream of Dimethyl ehter (DME) autothermal reforming process were performed in micro-reactors. Our study suggested two kinds of water gas shift (WGS) reaction process: High Temperature shift (HTS) - Low Temperature shift (LTS), Middle temperature shift (MTS). Firstly, using perovskite catalyst for MTS was decreased effieiciency since methanation. Using HTS-LTS the CO concentration was decreased about 2% ($N_2$ & $H_2O$ free) with the reaction temperature of $420^{\circ}C$ and $235^{\circ}C$ for HTS and LTS, respectively. As the final stage of CO cleaning process, preferential oxidation (PROX) was applied. The amount of additional oxygen need 2 times of stoichiometric at $65^{\circ}C$. The total conversion reforming efficiency of 75% was gained.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

A Strategy of Increasing the Wind Power Penetration Limit with VSC Type MMC-HVDC in Jeju Power System (전압형 MMC-HVDC에 의한 제주계통의 풍력한계용량 증대 방안)

  • Lee, Seungmin;Kim, Eel-Hwan;Kim, Ho-Min;Chae, Sang-Heon;Quach, Ngoc-Thinh
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.550-557
    • /
    • 2015
  • The Jeju Special Self-Governing Province is currently promoting the "Carbon-free Island by 2030" policy, which requires the use of renewable energy instead of fossil fuel so that the island will have no carbon gases generated by 2030. To implement this policy, the island plans to build a wind power plant capacity of 1.09 GW in 2020; this wind power plant is currently ongoing. However, when wind power output is greater than the power demand of the island, the stability of Jeju Island power system must be prepared for it because it can be a problem. Therefore, this study proposes a voltage source-type MMC-HVDC system linked to mainland Korea to expand the wind power penetration limits of Jeju Island under the stable operation of the Jeju Island power system. To verify the effectiveness of the proposed scheme, computer simulations using the PSCAD/EMTDC program are conducted, and the results are demonstrated. The scenarios of the computer simulation consist of two cases. First, the MMC-HVDC system is operated under variable wind power in the Jeju Island power system. Second, it is operated under the predicted Jeju Island power system in 2020.

Magnetic Particles in Rainfalls: An Environmental Magnetic Evaluation (강수 함유 자성물질에 대한 환경자기학적 분석)

  • Baatar, Amarjargal;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • To evaluate a potential wash-out effect of rainfalls, a preliminary environmental magnetic test was attempted. Measurement of isothermal remanent magnetization (IRM) and intensive microscopic observations were carried out on the solid particles extracted from the rainfalls collected for the past year (2009) in Daejeon, Korea. Dust particles collected from the rain-free (daily dust) or dustheavy days (during the Asian dust storm event) were also used as a comparison. IRMs were unanimously low for the solid particles extracted from the rainfalls, indicating an efficient wash-out effect of rainfalls as long as the magnetic concentration is concerned. Electron microscopy identified carbonbearing material, (carbon-coated) magnetite, and quartz. It is highly likely that the carbon-containing particles were produced by anthropogenic fossil fuel combustion.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

Study on Enhancement of Ammonia Generation for Effective Collision Frequency (유효충돌빈도를 고려한 암모니아 생성 증대기법 연구)

  • Sejin Kim;Yongseok CHoi;Hyunchul Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

Microstructure and Mechanical Properties of the Sintered Kaolin Block with Fly Ashes (Fly Ash를 이용한 고령토벽돌의 소결 특성)

  • Lee, Jin-Uk;Lee, Sung-Min;Kim, Hyung-Tae;Choi, Eui-Seok;Lee, Yong-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1164-1170
    • /
    • 2002
  • The effect of fly ash addition to the kaolin block has been investigated. The addition affected the firing temperature and physical properties such as water absorption and compressive strength. The starting materials were from korea natural resources and the fly ash were from the power plant using coal as fuel, containing free carbon of 8∼9 wt%. The starting natural materials were mixed with 5 different proportions of fly ash, pressed and then sintered at 1050, 1100, 1150 and 1200${\circ}C$. With sintering temperature, water absorption decreased and compressive strength increased. When specimens were sintered at the temperature lower than 1100${\circ}C$, water absorption increased and strength decreased with fly ash content. In contrast, when sintering was done at the temperature higher than 1150${\circ}C$, water absorption increased with fly ash content similarly but strength was improved.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Recent Research Trends of Exploring Catalysts for Ammonia Synthesis and Decomposition (암모니아 합성 및 분해를 위한 촉매 탐색의 최근 연구 동향)

  • Jong Yeong Kim;Byung Chul Yeo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • Ammonia is either a crucial resource of fertilizer production for solving the food problem of mankind or an important energy source as both an eco-friendly hydrogen carrier and a carbon-free fuel. Therefore, nowadays ammonia synthesis and decomposition become promising. Then, a catalyst is required to effectively perform the ammonia synthesis and decomposition. In order to design high-performing as well as cheap novel catalysts for ammonia synthesis and decomposition, it is necessary to test huge amount of catalyst candidates, but it is inevitably time-consuming and expensive to search and analyze using only traditional approaches. Recently, new methods using machine learning which is one of the core technologies of the 4th industrial revolution that can quickly and accurately search high-performance catalysts has been emerging. In this paper, we investigate reaction mechanisms of ammonia synthesis and decomposition, and we described recent research and prospects of machine learning-driven methods that can efficiently find high-performing and economical catalysts for ammonia synthesis and decomposition.

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.