• Title/Summary/Keyword: carbon-free fuel

Search Result 52, Processing Time 0.024 seconds

A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics (암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰)

  • Seung-Jun Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.125-136
    • /
    • 2023
  • Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.

A Study on Ammonia Reforming Catalyst and Reactor Design for 10 kW Class Ammonia-Hydrogen Dual-Fuel Engine (10 kW 급 암모니아-수소 혼소엔진을 위한 암모니아 개질 촉매 및 반응기 설계에 관한 연구)

  • LEE, SANGHO;CHOI, YOUNG;PARK, CHEOLWOONG;KIM, HONGSUK;LEE, YOUNG DUK;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.372-379
    • /
    • 2020
  • Ammonia-hydrogen dual-fuel engine is a way to reduce greenhouse gas emission because ammonia and hydrogen are carbon-free fuels. In ammonia-hydrogen dual-fuel engine, hydrogen is supplied to improve the combustion characteristic of ammonia. In this study, an ammonia reformer was developed to supply hydrogen for 10 kW class ammonia-hydrogen dual-fuel engine. Thermodynamic characteristic and catalyst were investigated for ammonia reforming. Heat transfer was important for high ammonia conversion of ammonia reformer. 99% of ammonia conversion was obtained when 10 LPM of ammonia and 610℃ of hot gas were supplied to the ammonia reformer.

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.

Comparison of spray characteristics for ammonia, ethanol, n-decane by using numerical simulation (시뮬레이션을 이용한 암모니아, 에탄올, 노말데케인 분무 특성 비교)

  • Lee, Jaejin;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2022
  • Due to increasingly strict emission regulations for carbon-based fuels in the shipping industry, there is a significant motivation to investigate the alternative fuel. Ammonia is one of the attractive alternative fuels as a carbon-free fuel. Since ammonia has different properties such as high vapor pressure and low boiling point compared to conventional fuels, further research into ammonia spray behavior is important. In this work, the spray characteristics of ammonia and other fluids (ethanol, n-decane) were compared by using numerical simulation. The results show that the spray characteristics of ammonia differs from those of the others due to the occurrence of flash boiling. The narrow-dispersed spray with accelerated velocity at the center have been observed for ammonia. It is also found that droplets of ammonia achieve smaller diameter with more uniform distribution, leading to better atomization behavior compared to the others.

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

An Equilibrium Analysis to Generate Syngas in the Pyrolysis and Gasification of Refuse Plastic Fuel (RPF 열분해 가스화시 합성가스 조성에 대한 화학평형 계산)

  • Kang, Pil-Sun;Bae, Su-Woo;Song, Soon-Ho;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.57-61
    • /
    • 2007
  • The aim of this study is to find out the condition that generates maximum $H_2$ through the calculation of equilibrium model with conditions of pyrolysis gases of Refuse Plastic Fuel(RPF). This study deals with the computational simulation of a RPF gasification using an equilibrium model based on minimization of the Gibbs free energy. An equilibrium analysis was carried out to determine species composition of Syngas in RPF gasification and reactions to variation of temperature, $O_2/Fuel$ ratio and Steam/Fuel ratio. Calculated results shows that hydrocarbons in pyrolyzed gas are converted to synthesis gas which is formed on hydrogen and carbon monoxide.

  • PDF

Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production

  • Jung, Jin-Young;Park, Mi-Seon;Kim, Min Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.262-267
    • /
    • 2014
  • Pyrolized fuel oil (PFO) was reformed by novel electron beam (E-beam) radiation, and the elemental composition, chemical bonds, average molecular weight, solubility, softening point, yields, and density of the modified patches were characterized. These properties of modified pitch were dependent on the reforming method (heat or E-beam radiation treatment) and absorbed dose. Aromaticity ($F_a$), average molecular weight, solubility, softening point, and density increased in proportion to the absorbed dose of E-beam radiation, with the exception of the highest absorbed dose, due to modification by free radical polymerization and the powerful energy intensity of E-beam treatment. The H/C ratio and yield exhibited the opposite trend for the same reason. These results indicate that novel E-beam radiation reforming is suitable for the preparation of aromatic pitch with a high ${\beta}$-resin content.

Research Trend of Direct Ammonia Anion - Exchange Membrane Fuel Cells (직접 암모니아 음이온 교환막 연료전지 연구 동향)

  • Seonyeob Kim;Ji Eon Chae;Jiseon Choi;Sunyeop Lee;Cheolwoong Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.41-51
    • /
    • 2023
  • As abnormal climatic event occur frequently due to global warming, many nations have proclaimed their commitment to achieving carbon neutrality and are actively pursuing a transition toward a hydrogen economy. At this time, ammonia has garnered significant attention not only as a high-capacity hydrogen carrier but also as a promising candidate as a carbon-free fuel. In particular, anion exchange membrane fuel cells offer the advantage of directly supplying ammonia to the fuel cell, eliminating the necessity for separate ammonia decomposition or hydrogen purification. Therefore, in this study, the operation principle and research trend of the anion exchange membrane fuel cell are reviewed, and several research using ammonia as a fuel in anion exchange membrane fuel cell are also investigated.

Continuous Operation of $CO_2$/NOx-free 50kW Checmial-Looping Combustor ($CO_2$/NOx-free 50kW 매체순환식 가스연소기 산화-환원 연속반응 실증)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Yi, Chang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.227-234
    • /
    • 2004
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion(CLC) may yield great advantages of savings of energy to $CO_2$ separation and suppressing the effect on environment. In chemical-looping combustor, fuel is oxidized by metal oxide medium (oxygen carrier particle) in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. The purpose of this study is to demonstrate inherent $CO_2$ separation and no NOx emission and to confirm high $CO_2$ selectivity, no side reaction (i.e., carbon deposition, hydrogen generation) by continuous reduction and oxidation experiment in a 50kWtb chemical-looping combustor. NiO/bentonite particle was used as a bed material and $CH_4$ and air were used as reacting gases for reduction and oxidation respectively.

  • PDF

The Technology Development and Substantiation of Small Hydrogen Powered Vessel (소형 수소추진선박 기술 개발 및 실증 )

  • JAEWAN LIM;SEJUN LEE;SANGJIN YOON;OCKTAECK LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.555-561
    • /
    • 2023
  • In this study, we proposed a standard model for the design, construction and demonstration of the technology development and substantiation of small hydrogen powered vessel in order to respond to the alternative fuel-using vessel market that requires the use of low-carbon/carbon-free fuel as a greenhouse gas reduction measure. The hydrogen fuel cell-based electric propulsion system developed through this is optimized through performance and durability tests on the land-based test site (LBTS), and the electric propulsion system applied to this result is mounted on a small hydrogen propulsion vessel and operated. Simultaneously, through the digital twin technology between the LBTS and the hydrogen-propelled vessel on the sea, the technology that can predict and diagnose the problems that can occur in the electric propulsion system of the vessel is applied to carry out the empirical study of the hydrogen-propelled vessel. In addition, we propose a commercialization model by analyzing the economic feasibility of the demonstration vessel.