• 제목/요약/키워드: carbon-flux analysis

검색결과 99건 처리시간 0.033초

IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가 (Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank)

  • 박희우;박진성;조종래
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

유해화학물질의 생태계 모델링 - I. 동경만 Nonylphenol의 환경동태 해석 - (Ecological modeling for toxic substances - I . Numerical simulation of transport and fate of Nonylphenol in Tokyo Bay-)

  • 김동명
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.827-835
    • /
    • 2005
  • A three-dimensional ecological model (EMT -3D) was applied to Nonylphenol in Tokyo Bay. EMT -3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are $8.60\times 10^5\;g,\;2.19\times 10^2\;g\;and\;3.78\times 10^0\;g$ respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were $6.02\times10^3\;g/day,\;6.02\times10^2\;g/day\;and\;1.02\times10^1\;g/day$, respectively.

Carbon Dioxide Budget in Phragmites communis Stands

  • Ihm, Hyun-Bin;Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Ha-Song
    • The Korean Journal of Ecology
    • /
    • 제24권6호
    • /
    • pp.335-339
    • /
    • 2001
  • The dynamic model was developed to simulate the photosynthetic rate of Phragmites communis stands in coastal ecosystem. The model was composed of the compartments of both climatic and biological variables. The former were photosynthetic photon flux density(PPFD), daily maximum- and minimum-temperature. The latter were combinations of the specific physiological responses of plant organs with the biomass of each organs. The PPFD and air temperature were calculated and using those values, gas exchange rate of each plant organ was calculated at every hour. The carbon budget was constructed using the modelled predictions. Analysis of annual productivity and fluxes showed that yearly gross population productivity, yearly population respiration and yearly net population productivity were 33.4, 21.3 and 12.1 $CO_2ton{\cdot}ha^{-2}{\cdot}yr^{-1}$, respectively. The final result was tested over two stands, produced promising predictions with regards to the levels of production attained. The model can be used to determine production potential under given climatic conditions and could even be applied to plant canopies with analogous biological characteristics.

  • PDF

식물의 탄소대사공학 연구동향 (Current status on carbon metabolic engineering in plants)

  • 김동헌;이시명;박종석;김수진;김범기;윤인선;김둘이;변명옥
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.205-211
    • /
    • 2010
  • Yield productivity of staple crops must be increased at least 50% by 2050, in order to feed the world population which is expected to reach 90 billions. Photosynthetic carbon assimilation and carbohydrate metabolism leading to the production of starch would be the final frontier to quest for new sources of technology enabling such a drastic increase of crop productivity. In this review, attempts to genetically engineer plant photosynthetic carbon reduction cycle and metabolic pathways to increase starch production are introduced.

Hyperpolarized Carbon-13 Magnetic Resonance Imaging: Technical Considerations and Clinical Applications

  • Ying-Chieh Lai;Ching-Yi Hsieh;Yu-Hsiang Juan;Kuan-Ying Lu;Hsien-Ju Lee;Shu-Hang Ng;Yung-Liang Wan;Gigin Lin
    • Korean Journal of Radiology
    • /
    • 제25권5호
    • /
    • pp.459-472
    • /
    • 2024
  • Hyperpolarized (HP) carbon-13 (13C) MRI represents an innovative approach for noninvasive, real-time assessment of dynamic metabolic flux, with potential integration into routine clinical MRI. The use of [1-13C]pyruvate as a probe and its conversion to [1-13C]lactate constitute an extensively explored metabolic pathway. This review comprehensively outlines the establishment of HP 13C-MRI, covering multidisciplinary team collaboration, hardware prerequisites, probe preparation, hyperpolarization techniques, imaging acquisition, and data analysis. This article discusses the clinical applications of HP 13C-MRI across various anatomical domains, including the brain, heart, skeletal muscle, breast, liver, kidney, pancreas, and prostate. Each section highlights the specific applications and findings pertinent to these regions, emphasizing the potential versatility of HP 13C-MRI in diverse clinical contexts. This review serves as a comprehensive update, bridging technical aspects with clinical applications and offering insights into the ongoing advancements in HP 13C-MRI.

장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교 (On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers)

  • 강민석;김준;양현영;임종환;천정화;문민규
    • 한국농림기상학회지
    • /
    • 제21권3호
    • /
    • pp.135-145
    • /
    • 2019
  • 장기간 관측된 자료를 기반으로 그 시계열의 장주기나 경향을 분석할 때 선행되어야 할 조건은 과거에 관측된 자료와 현재에 관측된 자료가 비교 가능해야 한다는 점이다. 이러한 자료의 연속성을 확보하기 위해서는 장기 관측에 사용된 기기들 간에 호환성이 보장되어야 한다. 우리나라에서 가장 긴 에디 공분산 플럭스 관측 역사를 가지고 있는 광릉 활엽수림에서 다양한 기체분석기가 플럭스 관측에 사용된 가운데, 2015년 7월 과거 10년 이상 사용되었던 개회로 기체 분석기(Model LI-7500, LI-COR, Inc.)에서 봉폐회로 기체분석기(Model EC155, Campbell Scientific, Inc.)로 교체되었다. 기체분석기가 완전히 교체되기 전 두 기체분석기로 동시에 관측되었던 2015년 8월부터 12월까지 5개월의 기간 동안 모은 이산화탄소와 수증기(잠열) 플럭스를 서로 비교해보았다. 이산화탄소 플럭스는 일평균기온이 영상이었던 시기에 기체분석기 간의 큰 차이는 없었으나, 영하로 떨어지면서 개회로 기체분석기의 경우 기기에서 발생하는 열 때문에 이산화탄소 플럭스가 양의 값(이산화탄소 발원)에서 0 또는 음의 값(이산화탄소 중립 또는 흡원)으로 편향됨이 확인되었다. 잠열 플럭스는 봉폐회로 기체분석기에서 관측된 값이 주파수 반응 보정을 통해 수증기의 튜브 감쇄 효과를 보정하였음에도 불구하고, 개회로 기체분석기에서 관측된 값보다 평균적으로 9% 정도 작았으며, 5개월 동안 적산 시 20% 이상 차이(봉폐회로: 166 mm, 개회로 211 mm)났다. 본 연구결과는 광릉 활엽수림에서 관측된 장기 플럭스 자료 분석 시, 개회로 기체분석기의 겨울철 가열 효과에 대한 추가적인 공기밀도 보정의 필요성과 함께 봉폐회로 기체분석기에서 나타나는 잠열 플럭스의 과소평가 경향에 대한 이해가 수반되어야 함을 시사한다.

탄소강의 담금질 처리과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(I) - 온도분포의 해석 - (An Analysis Finite Element for Element for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel (I) - Analysis of temperature distribution -)

  • 김옥삼;조의일;구본권
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.213-221
    • /
    • 1995
  • Temperature distribution, transformation and residual stresses generated during the quenching process of carbon steel. It follows many difficulties in the analytical considerations on those quenching process because of the coupling effects on temperature and metallic structures. In this paper one of the basic study on the quenching stresses was carried out for the case of the round steel bar specimen(SM45C) with 40mm both in its diameter and length. The temperature distributions considering strain hysteresis were numerically calculated by finite element technique. In calculating the transient temperature field, the heat flux between water and rod surface was determined from the heat transfer coefficient. The gradient of temperature is almost same to geometric of specimen. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the specimen.

  • PDF

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

온대지역 부영양 저수지의 이산화탄소 배출량 산정 (Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region)

  • 정세웅;유지수;박형석
    • 한국물환경학회지
    • /
    • 제32권5호
    • /
    • pp.433-441
    • /
    • 2016
  • Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.

기후변화의 영향을 받는 세계목재시장이 역으로 지구온난화에 미치는 영향 (The Effect of the Global Timber Market on Global Warming when Climate Changes)

  • 이덕만
    • 자원ㆍ환경경제연구
    • /
    • 제17권2호
    • /
    • pp.287-311
    • /
    • 2008
  • 본 연구는 지속적인 산림경영 증진의 필요성과 관련한 한 분야의 연구로서 기후변화의 영향을 받는 세계목재시장이 산림을 통해 대기에 배출하는 순탄소량의 규모에 대한 측정을 시도하였다. 이를 위해 본 연구는 기후변화의 영향을 받는 세계목재시장 분석을 위해 개발한 목재공급모형(변형된 TSM 2000)과 동태적 탄소모형(확장된 TCM)을 통합하여 기후변화의 영향을 받는 세계목재시장이 산림을 통해 대기에 배출하는 순탄소량의 규모를 1995년부터 2085년까지 90년간 시뮬레이션하였다. 정상적으로 성장하는 목재수요(ND) 시나리오 하의 시뮬레이션 결과에 따르면 2085년에 이르러 기후변화의 영향을 받는 세계목재시장은 1990년도 대기에 축적된 탄소랑의 약 3.60퍼센트를 감소시킨다는 사실을 알 수 있다. 따라서 본 연구의 결과는 기후변화의 영향을 받는 세계목재시장이 산림의 탄소 유입과 배출을 통해 역으로 지구온난화를 완화하는데 기여하게 된다는 사실을 보여 준다. 본 연구는 민감도 분석을 위해 빠르게 성장하는 목재수요(HD) 시나리오와 매우 빠르게 성장하는 목재수요(VHD) 시나리오 하에서 기후변화의 영향을 받는 세계목재시장이 대기에 배출하는 순탄소량의 규모에 대한 시뮬레이션을 시도하였다.

  • PDF