• Title/Summary/Keyword: carbon-epoxy composite

Search Result 621, Processing Time 0.026 seconds

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Nondestructive Sensing Evaluation of Ni Nanowire Strands and Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Techniques (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 및 Carbon Nanotube 강화 에폭시 복합재료의 비파괴 감지능 평가)

  • Jung, Jin-Gyu;Kim, Sung-Ju;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.269-272
    • /
    • 2005
  • Nondestructive damage sensing and load transferring mechanism of Ni nanowire strands and multi-wall carbon nanotube (MWCNT)/epoxy composites were investigated using electro-micromechanical techniques. MWCNT composite was especially prepared for high volume contents, 50 vol % of reinforcement. Electro-micromechanical techniques were applied to measure apparent modulus and contact resistance of Ni nanocomposites with their alignment and different diameters, and adding contents. Applied cyclic load affected on apparent modulus and electrical properties on nanocomposites due to various inherent properties of each CNMs. Contact resistivity on humidity sensing was a good indicator for monitoring as for multifunctional applications. Further study on actuation as well as sensing will be investigated for the following work continuously.

  • PDF

Nondestructive Sensing Evaluation of Thermal Treated Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement (전기저항 측정 방법을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화된 에폭시 복합재료의 비파괴적 감지능 평가)

  • Jung Jin-Kyu;Park Joung-Man;Kim Dae-Sik;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.15-18
    • /
    • 2004
  • Nondestructive damage sensing and mechanical properties for thermal treated carbon nanotube(CNT) and nanofiber(CNF)/epoxy composites were investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison. Electro-micromechanical techniques were applied to obtain the fiber damage and stress transferring effect of carbon nanocomposites with their contents. Thermal treatment and temperature affected on apparent modulus and electrical properties on nanocomposites due to enhanced inherent properties of each CNMs. Coefficient of variation (COV) of volumetric electrical resistance can be used to obtain the dispersion degree indirectly for various CNMs. Dispersion and surface modification are very important parameters to obtain improved mechanical and electrical properties of CNMs for multifunctional applications. Further optimized functionalization and dispersion conditions will be investigated for the following work continuously.

  • PDF

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

Aging Characteristics of Carbon Fiber/Epoxy Composite Ring Specimen (탄소섬유/에폭시 복합재 링 시편의 노화 특성 평가)

  • Yoon, Sung-Ho;Oh, Jin-Oh
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • The effect of exposure times on the aging characteristics of carbon fiber/epoxy composite ring specimen was evaluated using an accelerating aging tester. Combined exposure conditions, such as temperature, moisture, and ultraviolet, were applied up to 3000 hours. Tensile properties and flexural properties including the effect of curvature were evaluated on the specimens subject to various exposure times through a material testing system. Their aging surfaces were observed through a scanning electron microscope. According to the results, tensile modulus was little affected by the exposure times. However, tensile strength, at the early stage of the exposure times, increased due to physical aging and curing reaction, but tensile strength slightly decreased due to degradation as the exposure times increased. The flexural modulus and flexural strength increased at the early stage of the exposure times, but slightly decreased as the exposure times increased. Aging surfaces of the specimens examined using the scanning electron microscope revealed a different morphology in various exposure times and provided useful information for identifying the degradation in mechanical properties of the composite subject to various exposure times.

Design of One-piece Composite Propeller Shaft for a Rear Wheel Drive Automobile (후륜구동 자동차용 일체형 복합재료 동력전달축의 설계)

  • 김진국;조덕현;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.49-52
    • /
    • 1999
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbon/epoxy composite and glass/epoxy one were designed and manufactured for a rear wheel drive automobile, which uses generally a steel two-piece propeller shaft. From the tests of the composite propeller shafts, it was found that the propeller shafts satisfied requirements of static torque transmission capability, torsional buckling capability and the first natural bending frequency and had 40% weight saving effect compared with steel propeller shaft.

  • PDF