• Title/Summary/Keyword: carbon-epoxy composite

Search Result 622, Processing Time 0.023 seconds

Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composite (탄소섬유직물/에폭시 복합제의 모우드 I 층간파괴인성 평가)

  • Lee Eun-Dong;Yoon Sung-Ho;Shin Kwang-Bok;Jeong Jong-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.698-703
    • /
    • 2004
  • In this study, mode I interlaminar fracture phenomena of carbon fabric/epoxy composite for tilting train were investigated. Specimens were 25mm $\times$ 180mm $\times$ 4.7mm with an initial artificial delamination of 65mm at one end. This delamination with the thickness of 12.5$\mu$m and 25$\mu$m (teflon film) was used. Mode I interlaminar fracture toughness was measured using the double cantilever beam and the fractured surfaces were examined through a scanning electron microscope. The experimental results obtained in this study would be applicable in the design and structural analysis of the composite structures.

  • PDF

The Wave Propagation in Transversely Isotropic Composite Laminates (가로 등방성 복합재료의 초음파에 관한 연구)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.62-69
    • /
    • 2006
  • In transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency. Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by 7300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in transversely isotropic composite laminates by the water immersion C-scan procedure.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.

Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites (메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질)

  • HAN GIL-YOUNG;AHN DONG-GU;KIM JIN-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF

Effects of the Point Angle on Drilling Characteristics Carbon Fiber Epoxy Composite Materials Using WC-drill Drilling (초경드릴을 이용한 탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 선단각의 영향)

  • 김형철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.85-91
    • /
    • 1996
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting condition in order to minimize the problems occured in the material when being drilled. It has been comfirmed by a frequencyanalysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the rotating drill and the stacking angle of the carbon fiber. The drilling experiment has been done with several drills having different point angles and the drilling characteristics, like the effects such that change in the point angle influences the cutting force and the external surface condition, was evaluated.

  • PDF

Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조의 전자기파 흡수체 제작 및 전자기적 특성)

  • Park Ki-Yeon;Lee Sang-Eui;Han Jae-hung;Kim Chun-Gon;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band $(8.2\~12.4GHz)$ frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane (PU) foams containing multi­walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

  • PDF

A study on effects of the fiber orientation and point angle on drilling characteristics of carbon fiber epoxy composite materials (탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 섬유 배열방향과 선단각의 영향에 관한 연구)

  • Kim, Hyeong C.;Lee, Woo Y.;Namgung, Suk.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 1997
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting conditions in order to minimize the problems occurred in the material while being drilled. It has been confirmed by a frequency analysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the ortating drill and the stacking angle of the carbon fiber. By the drilling experiment with several drills having different point angles, the drilling char- acteristics, which show the relations between the change in the point angle and cutting force or external surface condition, were analyzed.

  • PDF

A Study on Compressive Strength of Carbon/epoxy Composite Structure Repaired with Bonded Patches after Impact Damage (충격 손상된 카본/에폭시 복합재 구조의 패치 접착 보수 방안 적용 후 압축 강도 특성 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lim, Sung-Jin;Shin, Chul-Jin
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • In this study, repair and maintenance schemes of the damaged composite structure was investigated, and a repair process of the carbon/epoxy laminate composite structure was investigated numerically and experimentally. The composite laminates were damaged by drop weight type impact test machine. The damaged composite structure was repaired using external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

A Study on the Fire Safety of a Hybrid Composite Train Carbody (하이브리드 복합재 철도차량 차체의 화재 안전성 평가연구)

  • Kim, Jung-Seok;Lee, Duk-Hee; Jung, Woo-Sun;Cho, Sea-Hyun
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • This paper explains fire safety tests of a hybrid composite train carbody with carbon/epoxy sandwich bodyshell and stainless steel underframe. In this study, a large scale mock-up was used to evaluate the fire safety of the composite train carbody. The test was conducted to the bare composite carbody mock-up without interior facilities and the fully equipped one. Tile fire propagation and temperature distribution of the carbon/epoxy bodyshell and the glass phenol interior panels was evaluated under the real fire accident scenario. The test scenario was based on the DaeGu subway fire accident. From the tests, both the surface temperature of the interiors and the composite bodyshell wore lower than tile ignition temperature. In addition, the fire spread along the surface of the interiors and bodyshell was not occurred.

Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage (Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가)

  • Kang, Min-Sung;Choi, Jung-Hun;Kim, Sang-Young;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.