• 제목/요약/키워드: carbon-dioxide emissions

Search Result 458, Processing Time 0.026 seconds

Biotechnology for the Mitigation of Methane Emission from Landfills (매립지의 메탄 배출 저감을 위한 생물공학기술)

  • Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes (자가가교형 P(GMA-g-PPG)-co-POEM) 분리막의 이산화탄소/질소 분리 성능에 대한 PVP의 영향)

  • Kim, Na Un;Park, Byeong Ju;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Global warming due to indiscriminate carbon dioxide emissions has a profound impact on human life by causing abnormal climate change and ecosystem destruction. As a way to reduce carbon dioxide emissions, in this study, we presented a polymeric membrane prepared by blending a self-crosslinkable P(GMA-g-PPG)-co-POEM (SP) copolymer and commercial polymer polyvinylpyrrolidone (PVP). As the content of PVP increased, it was observed that the gas permeance decreased and $CO_2/N_2$ selectivity increased. At 30 wt% PVP content, the $CO_2$ permeance of the membrane decreased from 72.9 GPU of pure SP polymer to 12.6 GPU, while $CO_2/N_2$ selectivity improved by 79% from 28.1 to 50.4. It results from the hydrogen bonding between the SP copolymer and PVP, leading to more compact structure of the polymer chains, which was confirmed by FT-IR, TGA, XRD and SEM analysis. Therefore, we suggest that the permeance and selectivity of the membranes can be easily adjusted as desired by controlling the PVP content in the SP/PVP polymer blend.

Testing for Convergence in Carbon Dioxide Emissions : Using a Dynamic Panel Analysis and Panel Unit Root Test (이산화탄소 배출량의 수렴성 검정 : 다이나믹 패널 분석과 패널 단위근 검정을 이용하여)

  • Cho, Sungtaek;Cho, Yongsung
    • Environmental and Resource Economics Review
    • /
    • v.18 no.1
    • /
    • pp.53-73
    • /
    • 2009
  • This study examines the existence of ${\beta}$-convergence of carbon dioxide emissions in 24 countries over the period 1971~2002. For that purpose, The model of economic growth developed by Barro and Sala-i-Martin (1995) is extended and conducted Dynamic panel analysis and unit root testing by employing the panel stationarity test of Levin et al. (2002) and 1m et al. (2003). A dynamic panel estimation is well known method including capacity to control for both the endogeneity problem and the unobserved country-specific effects problem. Dynamic panel estimation method has been widely used in similar empirical studies. therefore, we also used the dynamic panel estimation method in our estimation. The result show that evidence of ${\beta}$-convergence exists among both the Obligatory GHG reduction countries (Annex) and the Non-obligatory GHG reduction countries (Non-Annex). but China discharge amount of $CO_2$ gas more than any other country. This fact can cause some bias in overall test. and so we reexamined test of convergence for Non-annex countries excluding china. As expected, in the Non-annex countries excluding china, I couldn't find any evidence of convergence.

  • PDF

Exploring Sub-watershed suitable to UN-REDD/AR-CDM by Comparative Evaluation of Carbon Stock in Baekdu Mountain (백두산에서 탄소저장량 비교분석을 통한 UN REDD/AR-CDM 등록대상 소유역 추적)

  • Joo, Seung-Min;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • UN-REDD (United Nations programme on Reducing Emissions from Deforestation and forest Degradation in Developing Countries) and AR-CDM (Afforestation/Reforestation-Clean Development Mechanism) is currently being emerged as one of important mechanism to reduce carbon dioxide in relation to the deforestation. Discussion on North Korea as UN-REDD/AR-CDM project target continues with a view to preventing deforestation and to securing CER(certified emission reduction) for South Korea. The forests in Mt. Baekdu are degraded, deforestation is occurred, nevertheless, portion of forested area is still high, where both REDD and AR-CDM investment potential are quite high. Accordingly, this study is intended to explore a simultaneous registration potential to UNREDD/AR-CDM for Mt. Baekdu although separate registration to UN-REDD or AR-CDM has already gained worldwide recognition as a typical method in the process of GHG (Greenhouse Gas) reduction project. The results indicate that selecting UN-REDD or AR-CDM in accordance with sub-watershed forest condition could capture 53.2% more carbon dioxide than REDD alone and 21.9% more than AR-CDM alone. It is anticipated that this research output could be used as a realistic evidence to introduce carbon sequestering project in accordance with sub-watershed forest condition.

The Research about Map Model of 3D Road Network for Low-carbon Freight Transportation (저탄소 화물운송체계 구현을 위한 3차원 도로망도 모델에 관한 연구)

  • Lee, Sang-Hoon
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • The low-carbon freight transportation system was introduced due to increase traffic congestion cost and carbon-dioxide for global climate change according to expanding city logistics demands. It is necessary to create 3D-based road network map for representing realistic road geometry with consideration of fuel consumption and carbon emissions. This study propose that 3D road network model expressed to realistic topography and road structure within trunk road for intercity freight through overlaying 2D-based transport-related thematic map and 1m-resolution DEM. The 3D-based road network map for the experimental road sections(Pyeongtaek harbor-Uiwang IC) was verified by GPS/INS survey and fuel consumption simulation. The results corresponded to effectively reflect realistic road geometry (RMSE=0.87m) except some complex structure such as overpass, and also actual fuel consumption. We expect that Green-based freight route planning and navigation system reflected on 3D geometry of complex road structure will be developed for effectively resolving energy and environmental problems.

Systems Engineering-based Approach In Developing Concept Design Of Carbon Capture System (이산화탄소 포집 시스템 개념설계 개발을 위한 시스템 엔지니어링 기반 접근방법)

  • Lee, Chang Hwan;Hong, Dae Geun;Yoon, Su Chul;Suh, Suk-Hwna;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.23-36
    • /
    • 2013
  • Plant industry is one of technology-intensive and most prosperous industries in Korea because of its recent prosperity and promising outlook in export. However, no Korean EPC company has yet been well prepared in lifting their capacity sufficient enough to get the upstream conceptual or basic design and engineering orders for sizable plant projects which are known as the more value-added. If systems engineering, a methodology which developed complex systems such as airplanes and has been justified its effectiveness in Defense and NASA projects, can be integrated with plant engineering which should be developed and applied based on the requirements of so many stakeholders, conditions, lifecycle concepts, and constraints of the projects, huge synergic effect is expected particularly in developing a specific upstream design, which is a conceptual or basic design. The notion of integration with each other between systems engineering and plant engineering can be really the crux of EPC's success in any plant projects. This paper suggests an approach showing a methodology how to dig out, analyze, evaluate, verify and implement the stakeholders' requirements into a plant design in conceptual phase using the theory and skills of systems engineering. ISO/IEC 15288 well known systems engineering standards is used. Carbon capture system is used for a case study, for it is an emerging technology in reducing emissions of carbon dioxide causing global warming from flue gas after combustion. Here systems engineering was proven to play a substantial role in enhancing the capability of designers in developing a conceptual design of whole plant or certain part of crucial plant systems.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Forecasting the Effects of Korea-China FTA on Korean Industrial Exports and CO2 Emissions (한·중 FTA에 따른 산업부문별 수출 변화와 CO2 배출량 변화 예측)

  • Ha, Inbong;Lee, Kwangsuck
    • Environmental and Resource Economics Review
    • /
    • v.19 no.1
    • /
    • pp.81-100
    • /
    • 2010
  • This paper measures the impacts of the Korea-China Free Trade Agreement (FTA) on the emissions of carbon dioxide ($CO_2$) in Korean export industries. The Korean industrial exports were forecasted by employing Bayesian Kalman Filter Vector Auto-Regression (BVAR) model. The emissions of $CO_2$ were then estimated by applying the $CO_2$ emission coeffcients on the conditionally forecasted values of export by industries. Under the conditional scenario of the 50% reduction in current tariff rate through FTA between Korea and China, the total $CO_2$ emissions in Korea were expected to increase by 1.96% compared to the BAU (Non FT A) trend at the end of 2010. Another conditional scenario with no tariff after 2012 was also adopted. In this case, the total $CO_2$ emlssions were estimated to increase by 2.06% compared to the BAU up until the end of 2014. These facts imply that the FTA between Korea and China would not result in the significant increase of $CO_2$ emissions in Korea.

  • PDF

Life Cycle Assessment of Carbon Monoxide Production via Electrochemical CO2 Reduction: Analysis of Greenhouse Gas Reduction Potential (전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 전과정평가 : 온실가스 저감 잠재량 분석)

  • Roh, Kosan
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Electrochemical carbon dioxide (CO2) reduction technology, one of the promising solutions for climate change, can convert CO2, a representative greenhouse gas (GHG), into valuable base chemicals using electric energy. In particular, carbon monoxide (CO), among various candidate products, is attracting much attention from both academia and industry because of its high Faraday efficiency, promising economic feasibility, and relatively large market size. Although numerous previous studies have recently analyzed the GHG reduction potential of this technology, the assumptions made and inventory data used are neither consistent nor transparent. In this study, a comparative life cycle assessment was carried out to analyze the potential for reducing GHG emissions in the electrochemical CO production process in a more transparent way. By defining three different system boundaries, the global warming impact was compared with that of a fossil fuel-based CO production process. The results confirmed that the emission factor of electric energy supplied to CO2-electrolyzers should be much lower than that of the current national power generation sector in order to mitigate GHG emissions by replacing conventional CO production with electrochemical CO production. Also, it is important to disclose transparently inventory data of the conventional CO production process for a more reliable analysis of GHG reduction potential.