• Title/Summary/Keyword: carbon zero

Search Result 256, Processing Time 0.02 seconds

Numerical Simulation of Diffusion and Flow in Fabrication of Carbon/Carbon Composite Using Chemical Vapor Infiltration (다단계 화학반응과 밀도화 모델을 이용한 탄소/탄소 복합재 화학기상침투 공정의 확산 및 유동 수치해석)

  • Kim, Hye-gyu;Ji, Wooseok;Jo, Namchun;Park, Jonggyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.56-64
    • /
    • 2019
  • In this paper, a model is developed to simulate carbon/carbon composite fabrication using chemical vapor infiltration, considering density and porosity change in the preform and multi-step hydrocarbons reactions. The model considers the preform as a porous medium whose diffusion and flow properties changes due to the porosity. To verify the theoretical model, two numerical analyses were performed for the case that the flow inside the preform is zero and the case that the flow inside the preform is calculated by fluid mechanics. The numerical results showed good agreement with the experimental data.

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna (복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험)

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.

A Study on Consumers' Perception and Willingness to Pay for Fruits and Vegetables Using Renewable Energy (신재생에너지 이용 과채류에 대한 소비자 인식 및 지불의사에 관한 연구)

  • Kim, Seong-Hwi;Lee, Choon-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.485-505
    • /
    • 2021
  • This study investigated consumers' perceptions and willingness to pay (WTP) for fruit and vegetables grown using renewable energy such as solar power, geothermal, waste heat from incinerators, hot water from thermal power plants. To this end, this study conducted an online survey of 1,050 consumers in Seoul, Gyeonggi, and the six metropolitan cities, and the main findings are as follows. First, most of the consumers perceived climate change as a serious problem, and 82.8% recognized the government's declaration of carbon zero was appropriate, which means that the government's active response to climate change is important. Second, on the pros and cons of the use of renewable energy when cultivating fruits and vegetables, opinions in favor of solar power were the highest, followed by geothermal heat, waste heat from waste incineration plants, and thermal power generation hot drainage. Third, at least 28.0% to 41.7% of consumers were willing to purchase fruits and vegetables using renewable energy more expensive than fruits grown using fossil energy such as kerosene. This means that the fruit and vegetable market using renewable energy is valuable as a niche market.

Technology Competitiveness Analysis of New & Renewable Energy in Major Countries (주요국의 신재생에너지 분야 기술경쟁력 분석 연구)

  • Ha, Su-Jin;Choi, Ji-Hyeok;Oh, Sang Jin
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.72-84
    • /
    • 2022
  • As the threat of climate change escalates, 'net-zero' has become a priority for the international community, and the use of new and renewable energy sources is expected to play a significant role in reaching international carbon neutrality. Here, we evaluate technological competitiveness in terms of implementation and technology by analyzing scientific literature and patents in the new and renewable energy fields of five major countries. For the past 10 years (2009-2019), the most active areas of new and renewable energy research and development have been solar power, wind power, waste, and fuel cells. China is the forerunner in implementation, whereas the United States has the most advanced technology. Portfolio analysis revealed that Korea's fuel cell, the United States' bioenergy, China's waste, Japan's solar and fuel cell, and the European Union's wind power have shown to be in Star Field respectively. Technological competitiveness analysis found that Korea is lagging behind other countries in the new and renewable energy sector, and needs to set a new direction for future carbon-neutral research and development, investment, and policy.

A Study on the Application of AI-Based Composite Sensor in WTP (수도사업장에서의 AI 기반 복합센서 적용 방안 연구)

  • Hong, Sung-taek;An, Sang-byung;Kim, Kuk-il;Cho, Hyun-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.41-42
    • /
    • 2021
  • The Green New Deal policy was established to innovate the government's energy consumption structure, establish a third basic energy plan to strengthen the global competitiveness of the energy industry, and realize a carbon neutral society due to the increased need for transition to a low-carbon economy. Waterworks such as drinking water, water purification plant, and pressurization plant analyze control factors and energy consumption status by process to improve energy management efficiency and reduce energy usage through the 4th industrial revolution. Ultimately, we want to realize net-zero water purification plant.

  • PDF

Analyzing the air tightness of public housing through a blower door test (Blower door test를 통한 공공행복주택의 침기율 분석)

  • Kim, Jae-Hee;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.167-168
    • /
    • 2023
  • The government has established a zero-energy roadmap in accordance with its 2050 carbon neutrality strategy, and from 2023 onwards, residential buildings with 30 generations or more must be constructed as zero-energy structures. In response to this, measures for energy conservation through enhanced building tightness are being developed. The LH (Land and Housing Corporation) aims to achieve the first-stage building tightness performance targets by 2022 in preparation for this. Currently, South Korea has the "KS L ISO9972 - Building Tightness - Measuring the airtightness of buildings by the fan pressurization method" as the method for measuring building tightness, which was established in 2006 and revised in 2016. In practice, the airtightness is measured using the Blower Door Test method, and it is expressed as ACH50 (the number of air changes per hour at a pressure difference of 50 Pa between the indoor and outdoor environments). This study aims to measure and analyze the airtightness of Happy Homes constructed from 2020 to 2022, categorized by building type.

  • PDF

Research on Innovation Technologies for Zero Carbon: Carbon Dioxide Reduction in Construction and Concrete Industries (탄소 제로화를 위한 혁신 기술 연구: 건설 및 콘크리트 산업에서의 이산화탄소 저감 방안 동향)

  • Kim, Joo-Hyun;Park, Jung-Jun;Kim, Jong-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.549-563
    • /
    • 2022
  • Continuous global warming is causing ecosystem destruction and direct damage to human life. The main cause of global warming is greenhouse gases, which account for more than 90 % of carbon dioxide. The leaders of each country signed the Paris Agreement at the United Nations Convention on Climate Change (UNFCCC) to reduce greenhouse gas emissions. Currently, the total amount of CO2 emitted from South Korea is 664.7 million tons as of 2018, ranking eighth in the world. 37 % of South Korea's total CO2 emissions come from the construction & building field, especially the cement production, which is a construction material. Carbon reduction technologies can be largely divided into four types: carbon reduction (CC), carbon reduction and storage technology (CCS), carbon reduction and utilization technology (CCU), and carbon reduction, storage and utilization technology (CCUS). Overseas, CCUS technology is mainly applied to reduce and store CO2 emitted from construction and construction field. A technology for permanently storing CO2 through mineralization by capturing CO2 and utilizing CO2 into a cement production process was developed, and this technology is applied to the entire cement industry. However, the development of CCUS technology applicable to the cement industry is still insignificant in South Korea. In this study, carbon dioxide reduction technology and methods for reducing carbon dioxide emitted during the cement manufacturing process, which is the main component of concrete mainly used in civil engineering construction, were investigated. Overseas, it has reached the commercialization stage beyond the demonstration stage as a way to reduce carbon dioxide by vomiting carbonation reactions. Accordingly, if carbon dioxide reduction plan technology generated during cement manufacturing is developed based on domestic technology differentiated from foreign technology, it is expected to contribute one more step to the carbon neutrality policy.

Effect of Compositional Parameters on the Characteristics of C-SiC-$B_4C$ Composites

  • Aggarwal, R.K.;Bhatia, G.B.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.164-169
    • /
    • 2004
  • Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-$B_4C$ composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-$B_4C$ composites, heat-treated to $1400^{\circ}C$, have shown that their oxidation behaviour at temperatures of 800~$1200^{\circ}C$ depends jointly on the total ceramic content and the SiC : $B_4C$ ratio. Good compositions of C-SiC-$B_4C$ composites exhibiting zero weight loss in air at temperatures of 800~$1200^{\circ}C$ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-$B_4C$ composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : $B_4C$ ratio.

  • PDF

A Study on Strategies of Public R&D to Achieve National Carbon Neutrality: Focusing on the Implications of the Republic of Korea

  • Song, Jaeryoung;Kim, Cheolhu
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 2022
  • Climate action is at the top of the agenda in the international community, as demonstrated at the 2021 G7 Summit and the 2021 UN Climate Summit. Major developed countries are scrambling to make a transition to a green economy and create a new growth momentum. Following the Paris Climate Agreement in 2016, they focus on "carbon neutrality" as an effective means of tackling climate change. The Republic of Korea, a high-carbon economy, submitted its second Nationally Determined Contribution and announced carbon neutrality as a top policy priority. Accordingly, the country increases government budget in research and development (R&D) and science and technology (S&T) policies. Against this backdrop, this study analyzed policies on carbon-neutral S&T and R&D in major advanced countries. The analysis was made by identifying globally pending issues in carbon-neutral policies and climate technology. In addition, focus group interviews were conducted six times with 10 experts to come up with three R&D strategies and action plans for government-funded research institutes to achieve carbon neutrality. To be specific, the following measures were suggested. First, creative and innovative R&D programs are required to solve the problem of carbon emissions. Second, it is necessary to establish carbon neutrality policies and infrastructure which are sustainable to run and manage. Third, it is crucial to promote cooperation in climate technology based on excellence. In conclusion, the strategies proposed in this study are expected to provide directions and implications for policymakers, researchers, and scholars in science and technology to develop effective strategies to achieve national carbon neutrality.

An Evaluation of Net-zero Contribution Regarding Hydrogen Energy Conversion in Urban Building and Transport Sector (도시의 건물 및 수송 부문에서의 수소에너지 전환에 따른 탄소중립 기여도 평가)

  • SO JEONG JANG;RAE SANG PARK;YOUNG HOON CHOI;YONG WOO HWANG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.100-112
    • /
    • 2023
  • This study evaluated the contribution of carbon neutrality by calculating the carbon reduction amount and reduction intensity targeting the hydrogen pilot city and applying it to the carbon neutral reduction target. In the building sector, the reduction amount for 2030 was 10.8% on average. In addition, by 2050, the contribution to carbon neutrality of plan A was 14.1% on average, and the contribution to carbon neutrality of plan B was 15.1% on average. In the 2030 reduction amount of the transportation sector, the contribution to carbon neutrality was 138.4% on average. In addition, by 2050, the contribution to carbon neutrality in plan A was 82.5% on average, and the contribution to carbon neutrality in plan B was 74.9%. From the above research results, additional carbon reduction is possible when creating a hydrogen city, so it will be used as a basis of city-level carbon neutral model. It will also be used as a basis for technology development and investment promotion for various hydrogen supply methods in the future.