• Title/Summary/Keyword: carbon waste

Search Result 932, Processing Time 0.027 seconds

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Characterizations of Assimilable Organic Carbon, Biodegradable Dissolved Organic Carbon, and Bacterial Regrowth in Distribution Systems by Water Treatment (배수관망에서 수처리에 의한 AOC, BDOC및 세균성장의 특성)

  • Chang, Young-Cheol;Kweon Jung;Yoo, Young-Sik;Kang, Mi-Hye;Andrew A. Randall
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.42-52
    • /
    • 2002
  • Two full-scale distribution systems, one treating water by ozonation and another treating water by nanofiltration in parallel with lime softening, were monitored for bacterial growth. Both systems kept disinfectant residuals surf as chlorine and chloramine in their respective distribution systems. Bacterial growth was assessed by heterotrophic plate counts (HPC) on R2A agar. In the distribution systems fed by ozonated water, HPCs were correlated ($R^2$= 0.97) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation ($R^2$ = 0.75) with an exponential model based on AOC. No significant correlation was found between bacteria growth on R2A agar and BDOC concentrations. Therefore, in agreement with previous work, bacterial growth in the distribution systems was found to correlate with AOC concentrations.

The Composition and Physico-chemcal Characteristics of school waste in B area, Kyunggi-do (경기도 B 지역 학교폐기물의 성상 및 물리∙화학적 특성)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.70-78
    • /
    • 2008
  • In this study, the composition and physico-chemical characteristics of school waste which is located in B area, kyunggi-do was investigated. It is necessary to measure the characteristics of school waste to build the data-base for resource and recycling of waste. This school waste was composed of 12.25% of food wastes, 56.26% of papers, 9.26% of plastics&vinyls, 1.52% of textiles, 3.70% of wood, 0.11% of rubbers&leathers and others, respectively. Most of school wastes are mainly composed of paper and plastic waste and composition of combustible waste was about as 90%. From 3-components analysis, contents of moisture, combustible component, and ash was 5.72%, 88.29% and 5.98%, respectively. Moisture content was higher in Agricultural Dwelling school area compare to the urban dwelling school area. The chemical element of the school waste has the high order of carbon, oxygen, hydrogen on the dry basis of wastes and the low heating value of the MSW which is measured by calorimeter is shown as 3720.44kcal/kg.

  • PDF

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

Effect of pH on the $VFA_s$ fermentation in the anaerobic treatment of food waste (pH조절이 음식폐기물의 유기산발효에 미치는 영향)

  • 조한진;성낙창;김은호;장성호;손영일;박진식
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.32-37
    • /
    • 2001
  • The purpose of this study was to investigate the created liquid post-acid fermentation of usability of denitrification as exterior carbon sources by pH control. The time of acid fermentation of food waste, the slower loading capacity of organic matter, the faster decomposition rate, but the density of generation Volatile Fermentation Acids(VFAs), was weak and, $SBOD_{5}$ : ST-N rate and $SBOD_{5}/SCOD_{Cr}$ rate was low. Between TS and VS, VS was decreased to 4.5th day fast, and then was decreased slowly. 1.5 days after stating the experiments, $SCOD_{Cr}$, $SBOD_{5}$, STOC and $VFA_{s}$ was decreased of increased slowly, and then increased fast. And after showing the highest density, it was tended to decreased fast. At the time of $SBOD_{5}$ with the highest density, at $SBOD_{5}$ : ST-N ratio, $R_1$ was 303:1, $R_2$ was 319:1, $R_3$was the highest. After studying $SBOD_{5}$ : ST-N ratio and $SBOD_{5}/SCOD_{Cr}$ ratio, as a carbon source of biological denitrification it was profitable composition ratio.

  • PDF

A Study on the Production of Tile using Waste Activated Carbon and its Character Evaluation (폐 활성탄을 이용한 타일 제조 및 특성 평가에 관한 연구)

  • Park, Heung-Jai;Kim, Min-Su;Jeong, Jing-Wun;Jeong, Un;Lee, Bong-Hun;Kim, Young-Sik;Park, Yeon-Kyu;Jung, Sung-Uk
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2001
  • The tiles were manufactured using a mixture of the TK material(a raw material in making tile) and Cu-Cr-Ag impregnated activated carbon(ASC Charcoal). The extraction character of heavy metals in making tile was evaluated and the manufacturing conditions of tile were studied. The heavy metals in the mixture-before and after the tile was production of tiles was successful and as a result of heavy metal analysis, the tile showed that the concentration of heavy metal after the production of tiles was lower than that of the before one. The concentration of eluted heavy metal by acidic and basic solutions was low and the quality of the produced tile was similar to the commercial one. The result of this study suggested that the waste ASC charcoal was used to produce good tiles and it also might reduce soil pollution.

  • PDF

Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).