• Title/Summary/Keyword: carbon waste

Search Result 932, Processing Time 0.029 seconds

An overview of new oxidation methods for polyacrylonitrile-based carbon fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment ($200^{\circ}C$ to $300^{\circ}C$), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.

Application of a Thermophilic Aerobic Digestion Process to Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Eom, Yong-Suk;Oh, Byung-Keun;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.570-576
    • /
    • 2001
  • Thermophilic aerobic bacteria were applied in the degradation of industrial waste activated sludge (WAS) on a laboratory scale expreiment. The performance of digestion was estimated by measuring the reduction of total suspended solids (TSS), dissolved organic carbon (DOC), and total organic carbon (TOC). Among three strains of Bacillus stearothermophilus and three strains of Thermus species, B. stearothemophilus ATCC 31197 showed the best overall efficiency level for the degradation of industrial WAS, which was collected from a wastewater treatment plant in an oil refinery factory. Industrial WAS coul be successfully detraded in a batch digestion with ATCC 31197. The stability of the digestion process with ATCC 31197 was successfully verified by semi-continuous (fill-and-draw) digestion experiment. From the results of this study, it was shown that the thermophilic aerobic digestion process with ATCC 31197 could efficiently be applied to the degradation of industrial WAS.

  • PDF

Study on technique development for the solidified body of rock waste and evaluation of fracture toughness (암석폐재의 고화체 합성기술의 개발과 파괴인성평가에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyosun;Kim, Jin-Yong;Lee, Jeong-Gee;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1452-1461
    • /
    • 1997
  • The hot press apparatus to obtain the solidified rocks with 60mm of diameter against rock waste was developed, and the optimum conditions for solidification were founded out, of which were 300.deg. C of temperature and 1hr of holding time. The solidified rocks reinforced with the fibers (carbon, steel) were made by means of a hydrothermal hot press method. Fracture toughness of those was obtained using the round compact tension(RCT) specimens. Load and displacement behaviours of the solidified rocks reinforced with the fibers were dependent upon the fiber volume fraction and kind of the fibers. Strength and fracture energy of the solidified rocks with steel were much larger than those of the solidified ones with carbon because of the Bridge's effect, multiple cracking and crack branching phenomena.

Appropriate Technology for the Paper Recycling: A New Paradigm

  • Vu, Hong Ha Thi;Lai, Tuan Quang;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Every day a huge amount of paper is being used, most of them are thrown after using. This directly impacts on the environment. Therefore, waste paper management is necessity to protect the environment from its annihilation and pollution. Paper recycling products consist of printing paper, newspaper, corrugated containers, magazine paper and so on. Reuse waste paper will reduce the consumption of wood and virgin pulp as recycling one ton of newsprint can save approximately 1 ton of wood, meanwhile recycling 1 ton of printing paper can save more than 2 tons of wood. With increasing recycling rates, lower quality paper fractions may be included. Thus the selection of a paper recycling technology is a crucial first design consideration. The paper recycling must be accompanied by appropriate technology to manage a huge volume of wastepaper. The specific objectives of this study were as follows: (1) comprehensive literature reviews of paper production and consumption, (2) figure out about paper recovery and utilization, (3) investigate the paper recycling in the sustainable times, (4) introduce eco-friendly recycling technology to paper industry.

Removal of Uranium Ions in Lagoon Waste by Electrosorption

  • Jung, Chong-Hun;Won, Hui-Jun;Park, Wang-Kyu;Kim, Gye-Nam;Oh, Won-Zin;Hwang, Sung-Tai;Park, Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.701-706
    • /
    • 2003
  • A study on the electrosorption of U(VI) onto porous activated carbon fibers (ACFs) was performed to treat uranium-containing lagoon sludge. Effective U(Ⅵ) removal is accomplished when a negative potential is applied to the activated carbon fiber(ACF) electrode. For a feed concentration of 100mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1mg/L. The adsorbed uranium could be deserted from the ACF by passing a 1M NaCl solution through the cell and applying a positive potential onto the electrode. The regeneration of ACF from the cycling experiments was confirmed.

  • PDF

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

Utilization of Agricultural Residues as Low Cost Adsorbents for the Removal Dyes from Aqueous Solution (농업부산물(農業副産物)을 이용한 염료리용(染料理用) 저가흡착제(低價吸着劑)의 개발동향)

  • Shin, Hee-Duck
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2012
  • This review evaluates a number of different agricultural waste adsorbents and types of dyes. Certain wastewater containing different dye contaminants causes serious environmental problems. Recently, growing research interest in the production of carbon based has been focused on agricultural by-products. Low cost adsorbents derived from agricultural wastes have demonstrated outstanding capabilities for the removal of dyes from waste water. The use of cheap and eco-friendly adsorbents have been studied as an alternative substitution of activated carbon for the removal dyes from wastewater.

A Study on Reusable Metal Component as Burnable Absorber Through Monte Carlo Depletion Analysis

  • Muth, Boravy;Alrawash, Saed;Park, Chang Je;Kim, Jong Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.481-496
    • /
    • 2020
  • After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.

A Study on Consumers' Perception and Willingness to Pay for Fruits and Vegetables Using Renewable Energy (신재생에너지 이용 과채류에 대한 소비자 인식 및 지불의사에 관한 연구)

  • Kim, Seong-Hwi;Lee, Choon-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.485-505
    • /
    • 2021
  • This study investigated consumers' perceptions and willingness to pay (WTP) for fruit and vegetables grown using renewable energy such as solar power, geothermal, waste heat from incinerators, hot water from thermal power plants. To this end, this study conducted an online survey of 1,050 consumers in Seoul, Gyeonggi, and the six metropolitan cities, and the main findings are as follows. First, most of the consumers perceived climate change as a serious problem, and 82.8% recognized the government's declaration of carbon zero was appropriate, which means that the government's active response to climate change is important. Second, on the pros and cons of the use of renewable energy when cultivating fruits and vegetables, opinions in favor of solar power were the highest, followed by geothermal heat, waste heat from waste incineration plants, and thermal power generation hot drainage. Third, at least 28.0% to 41.7% of consumers were willing to purchase fruits and vegetables using renewable energy more expensive than fruits grown using fossil energy such as kerosene. This means that the fruit and vegetable market using renewable energy is valuable as a niche market.

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.