• Title/Summary/Keyword: carbon transport

Search Result 511, Processing Time 0.033 seconds

Estimation of Carbon Emissions Reductions by the Penetration Rates of Autonomous Vehicles for Urban Road Network (자율주행 자동차 도입 수준에 따른 도시부 도로 탄소배출량 감소효과 추정)

  • Lee, Hyeok Jun;Park, Jong Han;Ko, Joonho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.162-176
    • /
    • 2021
  • Recently, Autonomous Vehicle(AV) has been expected to solve various transportation problems. s the problem of environmental pollution become serious, research to reduce pollution is needed. However, empirical research on AV related pollution is insufficient. Based on this background, this study analyzed network performance changes and CO2 emissions introduc AVs and Electric Vehicles(EV) in eight intersections. The results show that when AVs with internal combustion engines were, the effect of carbon reduction over the network was insignificant. On the other hand, it was that the total amount of CO2 generated in the network decreased significantly when EVs and autonomous electric vehicles were emissions in the transportation sector.

Impact of Transportation on Air Quality and Carbon Emissions in Developing Countries: A Case of Myanmar (개발도상국의 교통수단이 대기 질 및 탄소배출에 미치는 영향: 미얀마를 중심으로)

  • Wut Yee Lwin;Byoung-Jo Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.231-240
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze air quality and carbon emissions in developing countries, particularly Myanmar, and explore the impact of transportation on CO2 emissions during peak hours relative to free-flow conditions. Method: This study conducted a traffic survey in two major cities in Myanmar to quantify carbon dioxide emissions from the transportation sector, using IPCC's tier 1 and tier 2 approaches, with statistical analysis performed using Python 3 and Microsoft Excel for comparative analysis of critical factors in CO2 emissions. Result: The result of this study is an estimate of the vehicle kilometers traveled (VKT) and fuel consumption in Yangon city for the year 2019, based on data from various sources including the Myanmar Statistical data base, YUTRA project survey, and Ministry of Electric and Energy. The study also analyzes the average travel time index (TTI) for the four roads in Yangon, which indicates the impact of congestion on vehicle travel time and CO2 emissions. Overall, the study provides important insights into the transport sector in Yangon city and can be used to inform policies aimed at reducing greenhouse gas emissions and improving traffic conditions. Conclusion: The study concludes that congestion plays a significant role in increasing fuel use and emission levels in the road transport sector in Myanmar. The analysis provides valuable insights into the impact of the sector on the environment and emphasizes the importance of addressing congestion to reduce fuel use and emissions. However, the study's scope is limited to Yangon city and Mandalay city, and some mean values may not accurately represent the entire country and other developing countries.

Plant responses to nano and micro structured carbon allotropes: Water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon

  • Dasgupta-Schubert, N.;Tiwari, D.K.;Francis, E. Reyes;Martinez Torres, P.;Villasenor Cendejas, L.M.;Lara Romero, J.;Villasenor Mora, C.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.245-251
    • /
    • 2017
  • Multiwalled carbon-nanotubes (MWCNT) and micro-structured carbon, such as biochar or activated carbon (AC), have been seen to significantly increase the growth indices of certain plant species such as maize (Zea mays L.). Seed imbibition is the stage where environmental factors that affect water transport across the seed coat barrier, make a large impact. This work explores the effect on water imbibition by maize seeds when the aqueous environment surrounding the seed is diluted by small concentrations (10 and 20 mg/l) of pristine MWCNT (p-MWCNT), carboxylate functionalized MWCNT (COO-MWCNT) and AC. The degree of sensitivity of the process to (i) large structural changes is seen by utilizing the nano (the MWCNT) and the micro (the AC) allotropic forms of carbon; (ii) to small changes in the purity and morphology of the p-MWCNT by utilizing 95% pure and 99% pure p-MWCNTs of slightly differing morphologies; and (iii) to MWCNT functionalization by using highly pure (97%) COO-MWCNT. Water imbibition was monitored over a 15 hour period by Near Infrared Thermography (NIRT) and also by seed weighing. Seed surface topography was seen by SEM imaging. Analysis of the NIRT images suggests rapid seed surface topological changes with the quantity of water imbibed. While further work is necessary to arrive at a conclusive answer, this work shows that the imbibition phase of the maize seed is sensitive to the presence of MWCNT even to small differences in the purity of the p-MWCNT and to small differences in the physicochemical properties of the medium caused by the hydrophilic COO-MWCNT.

Suggestions of the Construction and Management for Sustainable Highways (지속가능도로의 건설과 관리를 위한 방안)

  • Noh, Kwan Sub;Baek, Jong Dae
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • An R&D project, 'Carbon Neutral Road Technologies Development', sponsored by the Korean Ministry of Land, Infrastructure, and Transport was performed and sustainable development is being discussed in relation to global climate change. A draft of the green highway certification system, the green highway design and construction technologies for making low carbon eco-friendly roads, and Green Highway Technology Investment Evaluation System (GTIES) for estimating and managing carbon emissions from roads have been developed from the results of the R&D project. A scheme for expanding the application of these technologies and building sustainable road systems by considering the concept of sustainability was proposed in this research.

Characteristics of Friction Materials for Brake Disc in F-16 B32 Fighter (F-16 B32 전투기용 브레이크 디스크 소재의 물성특성 연구)

  • Kam, Moon-Gap;Kim, Won-Il;Kim, Tae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.98-104
    • /
    • 2007
  • The carbon fiber reinforced carbon composite (CFRC) materials are necessary for the advanced industries that require the thermal resistance. And the development and research for CFRC has been in progress in the field of aerospace and defense industry. CFRC have several advantages and special properties such as excellent anti ablation, outstanding strength retention at very high temperature, high heat capacity and thermal transport, high specific stiffness and strength, and high thermal shock resistance. They have been used as aircraft brake, rocket nozzle, nose cones, jet engine turbine wheels, and high speed craft. Since the technology related to CFRC was prohibited from importing and exporting, we developed our own technology to produce F-16 B32 brake disk made out of CFRC, and then we performed various tests to observe the characteristics of CFRC-based brake disk developed in this study in view of density, strength, friction, specific heat, and heat conductivity.

  • PDF

Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration (이산화탄소 해양격리 심해주입시스템의 초기설계)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

Methane hydrate formation Using Carbon Nano Tubes (탄소나노튜브를 이용한 메탄 하이드레이트 형성)

  • Park, Sung-Seek;Seo, Hyang-Min;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.549-552
    • /
    • 2009
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity at specially temperature and pressure condition, and water molecule and each other from physically-bond. $1m^3$ hydrate of pure methane can be decomposed to the maximum of $172m^3$ at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18~24% less than the liquefied transportation. However, when methane hydrate is formed artificially, the amount of consumed gas is relatively low due to a slow reaction rate between water and methane gas. In this study, for the better hydrate reaction rate, there is make nano fluid using ultrasonic dispersion of carbon nano tube. and then, Experiment with hydrate formation by nano fluid and methane gas reaction. The results show that when the carbon nano tubes of 0.004 wt% was added to pure water, the amount of consumed gas was about 300% higher than that in pure water and the hydrate formation time decreased.

  • PDF

Growth of Nanocrystalline Graphite on Sapphire by Solid Carbon Source Molecular Beam Epitaxy

  • Jerng, S.K.;Yu, D.S.;Kim, Y.S.;Ryou, Jung-A;Hong, Suk-Lyun;Kim, C.;Yoon, S.;Efetov, D.K.;Kim, P.;Chun, S.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.51-51
    • /
    • 2011
  • We have grown nanocrystalline graphite on sapphire substrate by using solid carbon source molecular beam epitaxy. Changes of structure from amorphous carbon to nanocrystalline graphite controlled by the growth temperature have been investigated by Raman spectroscopy. Raman spectra show D, G, and 2D peaks, whose intensities vary on the growth temperature. Atomic force microscopy reveals that the surface is very flat. Sapphire substrates of different cutting direction produce similar results. Simulations suggest that the interaction between carbon and oxygen causes disorders. Electrical transport measurements exhibit a Dirac-like peak, including a carrier type change by an external gate voltage bias.

  • PDF

The Role of Organic Matter and Black Carbon on the Cycling of Persistent Organic Pollutants (POPs) (POPs의 순환에 미치는 유기물 및 black carbon의 역할)

  • Nam Jae-Jak;Hong Suk-Young;Kim Kye-Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.255-266
    • /
    • 2006
  • Soil organic matter (OM) is well documented for its capacity to retain persistent organic pollutants (POPs) and thus is important in dictating the environmental partitioning of POPs between media such as air, water, and soil. Black carbon (BC) is a small component of OM and exhibitt a 10$\sim$100 times greater sorption capacity of POPs than humified OM. Furthermore, due to the inherent long environmental life time of BC, a result of its resistance to physical and biological degradation, POPs can continue to accumulate in BC over a long period of time. The unique properties of BC have been of particular interest over the last 30 years and have resulted in broad research being conducted into its effects of POP cycling in atmospheric, oceanographic and soil matrices. The results of such studies have proved valuable In providing new research initiatives into the role of BC in the cycling of hydrophobic organic compounds (HOCs) as well as giving further insight into the long range atmospheric transport (LRAT) potential and subsequent risk assessment criteria for persistent organic pollutants (POPs). In this report, we introduce a novel study examining the relationships between BC and OM with respect to their POP sorption capacity and discuss the role of BC in influencing the environmental regulation of organic pollutants.

A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process

  • Byon, Hye-Ryung;Lim, Hyun-Seob;Song, Hyun-Jae;Choi, Hee-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2056-2060
    • /
    • 2007
  • A successful combination of “oxygen-assisted chemical vapor deposition (CVD) process” and Co catalyst nanoparticles to grow highly pure single walled carbon nanotubes (SWNTs) was demonstrated. Recently, it was reported that addition of small amounts of oxygen during CVD process dramatically increased the purity and yield of carbon nanotubes. However, this strategy could not be applied for discrete Fe nanoparticle catalysts from which appropriate yields of SWNTs could be grown directly on solid substrates, and fabricated into field effect transistors (FETs) quite efficiently. The main reason for this failure is due to the carbothermal reduction which results in SiO2 nanotrench formation. We found that the oxygen-assisted CVD process could be successfully applied for the growth of highly pure SWNTs by switching the catalyst from Fe to Co nanoparticles. The topological morphologies and p-type transistor electrical transport properties of the grown SWNTs were examined by using atomic force microscope (AFM), Raman, and from FET devices fabricated by photolithography.