• 제목/요약/키워드: carbon steel pipe

검색결과 140건 처리시간 0.026초

감육배관의 파괴거동 평가 (Fracture Behavior Evalustion of Pipes with Local Wall Thinning)

  • 안석환;남기우;김선진;김현수;김진환;도재윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.61-66
    • /
    • 2001
  • Fracture behaviors of pipes with local wall thinning is very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe drosion-corrosion damage. However, effect of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, ovalization+cracking, local buckling and local buckling+cracking. Also, maximum load was successfully evaluated.

  • PDF

라인파이프용 고강도 열연강판의 기계적 성질 (Mechanical Properties of High Strength Hot Strips For Line Pipe Application)

  • 김문수;김준성;강기봉;노광섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.383-389
    • /
    • 1999
  • The purpose of this study was to investigate the effects of alloying and rolling condition on the mechanical properties and to develop high strength line pipe steels with good toughness. Tests were carried out by the laboratory experiments followed by mill trials and mass production. It was found that a small addition of microalloying elements, such as Nb, V with Mo or Ti remarkably increased the strength and toughness of hot strips. The optimum condition of thermomechanical rolling on low carbon microalloyed steel improved the toughness through the formation of a fine and uniform microstructure. Based on this mill trials following the fundamental research, the production technology of line pipe steels, grade X70∼X100 with high toughness, has been established. These grade steels exhibit excellent low temperature toughness (vTs= under -80$^{\circ}C$) and sufficient strength in both the base metal and the ERW seam weld position, respectively.

  • PDF

탄소강관에서의 인산염 부식억제제농도 감소의 반응속도상수 평가 (Adsorption rate of Phosphate Corrosion Inhibitor in Carbon Steel pipe)

  • 우달식;황병기
    • 환경영향평가
    • /
    • 제14권1호
    • /
    • pp.17-24
    • /
    • 2005
  • This study was performed to evaluate the adsorption rate of phosphate corrosion inhibitor and reaction rate constant in drinking water distribution systems. The optimum concentration of corrosion inhibitor would vary depending on the quality of water, pipe materials, and condition of metal surfaces. The current adsorption study indicated that the residual phosphate concentration of the corrosion inhibitor decreased with the time as it adsorbed on the surface of pipe material. As time went by, the residual phosphate concentration became constant. It means that the formation of the corrosion protection film on metal surfaces is completed.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

고압산소 이송배관시 화재·폭발 사고 방지를 위한 산소 취급 설비 안정성 향상에 관한 연구 (A Study on the Stability Improvement of Oxygen Handling Equipment to Prevent Fire and Explosion Accidents in High-Pressure Oxygen Transport Piping)

  • 오상규;김상령
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.84-90
    • /
    • 2023
  • 연소의 3요소 중 대기 중에 상시 존재하는 산소는 고압산소 조건에서는 극미량의 가연물만으로도 화재·폭발이 발생할 수 있으며. 연소속도 역시 상당하여 순식간에 공정 설비 및 배관을 녹이는 등 직접적인 영향을 줄 수 있는 온도까지 상승할 수 있다. 따라서 고압산소 상태에서 발생한 사고는 기타 사고에 비해 큰 피해가 발생하는 경우가 많다. 최근 산소공급 배관에 설치되어 있는 밸브를 조작하던 도중 내부에서 급격한 연소와 함께 파열이 발생하여 폭발로 인한 인명피해가 발생하였는데, 오래된 탄소강 배관인 경우 운전 중 발생한 Particle이 가연물이 되어 사고가 발생할 수 있다. 특히나 산소설비는 고압가스안전관리법에 따라 허가된 시설이고, 산업안전보건법에 의한 제한규정이 없는 상태이기 때문에 이러한 기준 적립이 무엇보다 중요하다. 따라서 본 연구에서는 사고사례 및 해외기준을 바탕으로 고압 산소 취급 시 안정성 향상을 위한 방법에 대해 검토하고자 한다.

전단간섭계와 적외선열화상을 이용한 감육 직관의 결함검출 (Defect Detection of Wall Thinned Straight Pipe using Shearography and Lock-in Infrared Thermography)

  • 김경석;정현철;장호섭;김하식;나성원
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.55-61
    • /
    • 2009
  • The wall thinning defect of nuclear power pipe is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid. This type of defect becomes the cause of damage or destruction of in carbon steel pipes. Therefore, it is very important to measure defect which is existed not only on the welding part but also on the whole field of pipe. This study use dual-beam Shearography, which can measure the out-of-plane deformation and the in-plane deformation by using another illuminated laser beam and simple image processing technique. And this study proposes Infrared thermography, which is a two-dimensional non-contact nondestructive evaluation that can detect internal defects from the thermal distribution by the inspection of infrared light radiated from the object surface. In this paper, defect of nuclear power pipe were, measured using dual-beam shearography and infrared thermography, quantitatively evaluated by the analysis of phase map and thermal image pattern.

CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가 (Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior)

  • 최지수;박수정;김윤해
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.174-179
    • /
    • 2021
  • 유체 이송에 사용되는 강재 파이프는 신설과 도장, 또는 부식과 노후화로 인한 제반 시설 보수에 거대한 규모의 시간과 비용이 요구된다. 이에 본 연구에서는 강재 파이프의 대체재로, 내부식성과 내화학성이 우수한 탄소섬유강화복합재료(Carbon Fiber Reinforced Plastic, CFRP) 파이프 구조의 최적화 설계를 수행하였다. 헬리컬 패턴 표면에 후프 패턴을 혼합적층하여 내구성을 향상시켰으며, 수분 환경에서의 에폭시 흡습 현상을 억제하기 위해, 할로이사이트 나노튜브(Halloysite Nanotube, HNT)를 첨가하였다. HNT/CFRP 파이프는 필라멘트 와인딩 공정으로 제작하였으며, 기계적 물성 시험과 70℃ 고온 증류수 환경하에서 흡습 시험을 진행하였다. 그 결과, 파이프 두께의 0.6%에 해당하는 후프 패턴의 적층 시, 가장 우수한 물성을 나타냈다. 또한 0.5 wt.% HNT 첨가 시 상대적으로 높은 내흡습성을 가졌으며, 층간 계면에서의 박리 현상이 지연되어 가장 낮은 강도 저하율을 보였다.

합금강관의 Energy Resistance Welding 용접조건에 따른 미세조직 거동 및 기계적 특성 연구 (Effects of Welding Condition on Microstructure and Mechanical Property of Energy Resistance Welding Alloy Steel Pipes)

  • 이경민;이동언;김성웅;윤병현;강희재;강남현;조경목
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.50-55
    • /
    • 2011
  • Energy resistance welding (ERW) is a pipe-producing process that has high productivity and low manufacturing cost. However, the high heat input of ERW degrades the mechanical property of the pipe. This study investigates the effect of heat input and alloying elements on microstructure and mechanical properties of ERW pipes. As the heat input increased, the ferrite amount increased. The ferrite amount in the weld centerline was larger than t at in the weld boundary. Medium carbon steels (S45C and K55) having 0.3~0.4wt.% carbon yielded a significant difference of ferrite amount in the weld centerline and weld boundary. High alloyed steels (DP780 and K55) having 1.5~1.6wt.% Mn showed a ferrite rich zone in the weld centerline. These phenomena are probably due to decarburization and demanganisation in the weld centerline. As the ferrite fraction increased, the hardness decreased a little for the S45C steels. In addition, DP780 steels and K55 steels showed that the hardness drops when those steels have a ferrite rich zone. But we demonstrated the good tensile property of the DP780 steels and K55 steels in which Mn is included.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Detection of Corrosion and Wall Thinning in Carbon Steel Pipe Covered With Insulation Using Pulsed Eddy Current

  • Park, Duck-Gun;Kishore, M.B.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.57-60
    • /
    • 2016
  • Non Destructive Testing (NDT) methods that are capable of detecting the wall thinning and defects through insulation and cladding sheets are necessary. In this study we developed a Pulsed Eddy Current (PEC) system to detect wall thinning of ferro magnetic steel pipes covered with 95 mm thick fiber glass thermal insulator and shielded with aluminum plate of thickness 0.4 mm. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and a search coil sensor were used as a detecting element. In both the cases, the experimental data indicates a considerable change in the detected pulse corresponding to the change in sample thickness. The thickness of the tube was made to change such as 2.5 mm, 5 mm and 8 mm from the inner surface to simulate wall thinning. Fast Fourier Transform (FFT) was calculated using window approach and the results were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra.