• 제목/요약/키워드: carbon shell

검색결과 304건 처리시간 0.029초

Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device (콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구)

  • Kim, Ji-Chul;Lee, Hak-Yeol;Kim, Il-Soo;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

Design and Fabrication of Cone Type Composite Lattice Structures (Cone형 복합재 Lattice 구조물의 설계 및 공정 연구)

  • Doh, Young-Dae;Chung, Sang-Ki;Lee, Sang-Woo;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.307-311
    • /
    • 2011
  • This paper is concerned with anisogrid composite lattice structures whose load bearing shell is formed by systems of geodesic unidirectional composite ribs made by automatic wet winding process. Lattice structures are usually made in the form of conical shell and consist of systems of helical and hoop ribs fabricated by continuous filament winding from carbon and epoxy composites. Design variables of the structure which are the angle of helical ribs and ribs spacings are determined by cone geometry and geodesic line. and Fabrication methods for the conical composite lattice structure are presented.

  • PDF

The Effects of Curvature Change on Penetration Characteristics of CFRP Laminate shell (곡률변화가 CFRP 적층쉘의 관통특성에 미치는 영향)

  • 조영재;이상훈;김영남;양인영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.274-279
    • /
    • 2004
  • Currently, carbon-fiber reinforced plastics(CFRP) are widely used in both space and civil aircraft due to their superior stiffness and strength to weight ratios compared to conventional metallic materials. This paper is to study the effects of curvature and stacking sequence on the penetration characteristics of composite laminated shell. And were performed to investigate the penetration characteristics of composite laminated shells by the oblique impact. They are stacked to [0$_3$/90$_3$]s, [90$_3$/0$_3$]s and [0$_2$/90$_3$/0]s, [90$_2$/0$_3$/90]s their interlaminar number two and fore. They are manufactured to varied curvature radius (R=100, 150, 200mm and $\infty$). When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistics-screen sensor located a known distance apart. In general, the critical penetration energy interface decrease and slope angle on the impact surface increased. [0$_3$/90$_3$]s and [0$_2$/90$_3$]s specimens higher than [90$_3$/0$_3$]s and [90$_2$/0$_3$/90]s specimens.

  • PDF

Organic Carbon, Calcium Carbonate, and Clay Mineral Distributions in the Korea Strait Region, the Southern Part of the East Sea

  • Khim, Boo-Keun;Shin, Dong-Hyeok;Han, Sang-Joon
    • Journal of the korean society of oceanography
    • /
    • 제32권3호
    • /
    • pp.128-137
    • /
    • 1997
  • This study presents results from a detailed sedimentological investigation of surface sediments obtained from the Korea Strait region, the southern part of the East Sea (Sea of Japan). The distribution of different types of bottom sediments is controlled by the recent fine-grained sediment transport and deposition combined with the lowerings of sea level during the last glacial period, forming a diverse mixture of organic-rich fine-grained and shelly coarse-grained sediments. In comparison to high organic concentration of fine-grained sediments in the inner continental shelf and slope areas, the shell-rich coarse-grained sediments on the outer shelf are discernible being further modified. These coarse-grained sediments are confirmed as relict resulting from the sediment dynamics during the lower sea levels of the last glacial period. Clay mineral distribution of the fine-grained sediments gives information about the transport mechanism. Presence of present-day current system (the Tsushima Warm Current) is most probable source for the fine-grained particles into the open East Sea from the East China Sea, indicating that Holocene sediment dynamics may be used to explain the observed distribution of surface coarse-grained shell-rich sediments.

  • PDF

An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs (연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • 제23권5호
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Design and Fabrication of Filament Wound Composite Lattice Structures (필라멘트와인딩에 의해 제조된 Lattice 구조물의 설계 및 제작 연구)

  • Doh, Young-Dae;Chung, Sang-Ki;Lee, Sang-Woo;Son, Jo-Hwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.421-427
    • /
    • 2010
  • This paper is concerned with Anisogrid composite lattice structures whose load bearing shell is formed by systems of geodesic unidirectional composite ribs made by automatic wet winding process. Lattice structures are usually made in the form of cylindrical shell and consist of systems of helical and hoop ribs fabricated by continuous filament winding from carbon and epoxy composites. Design variables of the structure which are the angle of helical ribs, ribs spacings, and cross sectional areas are determined by the method of minimization of satety factors whick is described in the paper. And, fabrication methods and actual experimental results are presented.

  • PDF

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.

The Effect of the Addition of Carbohydrate on the Concentration of Odorous Compounds in Pig Slurry (양돈 슬러리에 첨가된 발효탄수화물의 종류별 악취물질 농도 비교)

  • Hwang, Ok Hwa;Yang, Seung Hak;Jeon, Jung Hwan;Kwag, Jeong Hoon;Choi, Dong Yun;Yang, Seung Bong;Kim, Doo Hwan;Cho, Sung Back
    • Journal of Animal Environmental Science
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Slurry treatments included peanut shell, palm golden fiber, almond hull, which was added 2% of the amount of slurry, and non-treatment control (n=4 each group). Levels of odorous compounds were measured from the liquid slurry incubated in $20^{\circ}C$ for 2 wk in chamber whose structure is similar to slurry pit. Concentration of phenols and indoles was higher (p<0.05) in control (48.4, 4.0 ppm) compared to almond hull (31.5, 1.4 ppm) or palm golden fiber (29.1, 1.6 ppm) group. Short chain fatty acid (SCFA) level was lowest (p<0.05) in control (2,121 ppm) but highest in peanut shell group (3,640 ppm). Branched chain fatty acid (BCFA) concentration was highest (p<0.05) in peanut shell (296 ppm), but lowest in almond hull (90 ppm). Taken together, concentration of odorous compounds was decreased by addition of almond hull in pig slurry by which crude fiber and non-digestible fiber (NDF) may act as a carbon source.