• Title/Summary/Keyword: carbon shell

Search Result 304, Processing Time 0.023 seconds

Preparation and Adsorption-photocatalytic Activity Evaluation of TiO2-Coconut Shell Powder Composite (TCSPC) (TiO2-Coconut Shell Powder Carbon 복합체 (TCSPC) 제조 및 흡착 광촉매 산화 활성 평가)

  • Lee, Min Hee;Kim, Jong Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.357-362
    • /
    • 2015
  • A novel $TiO_2$-Coconut Shell Powder Composite (TCSPS), prepared by the controlled sol-gel method with subsequent heat treatment, was evaluated as an innovative photocatalytic absorbent for the removal of methylene blue. Optimal preparation conditions of TCSPC were obtained by a response surface methodology and a central composite design model. As compared with the results obtained from one-factor-at-a-time experiments, the values were approximated to the nearest condition of these values and the following experimental parameters were set as the optimum : $600^{\circ}C$ calcination temperature and 20 g of coconut shell powder loading amount.

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.

Investigation on the Removal of Dissolved Aluminum Ion in Drinking Water (정수중(淨水中)의 용존(溶存)알루미늄 제어방안(制御方案)의 조사(調査))

  • Choi, Suing-Il;Kim, Moon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.42-52
    • /
    • 1997
  • The affection of activated carbon on the dissolved aluminum ion in drinking water has been observed. In addition, the aluminum ion removal capability of activated, alumina, chitosan, and ion exchange resin have been investigated. Experimental results indicated that the coal based activated carbon released considerable amount of aluminum ion to the water while coconut shell based activated carbon didn't. However the release was not continuous. Activated alumina didn't show any recognizable removal capability for aluminum ion in water. Particulate chitosan has removed aluminum ion although dissolved chitosan has not. However it need to development a regeneration process for chitosan to be an effective mean for aluminum ion removal. Ion exchange resin showed a reliable aluminum ion removal capability. The ion exchange capacity was 2.63 meq/g resin for the aluminum ion in drinking water.

  • PDF

Characterization of Carbon Molecular Sieve for Separating CH4 Gas (메탄가스 분리용 탄소분자체 특성 연구)

  • Lee Byum-Suk;Kim Taik-Nam;Kim Yun-Jong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.157-162
    • /
    • 2004
  • The object of this research is to develop a carbon molecular sieve(below CMS) which can separate selectively to convert mixture gases spout at waste landfill into fuel. And this research is meaningful from the viewpoint of a quality improvement of CH$_4$ gas and an utilization of by-product. CMS was prepared using coconut shell powder as starting material and the effects of activators, temperature and modifier on the reaction were investigated in this research. Also, pore diameter, surface area of CMS and adsorption rate were measured and studied by cahn balance and ASAP2010. Its specific surface area and pore distribution were controlled easily at 800^{\circ}C and adsorption rate was very good. The CMS prepared in this research is shown to be able to separate landfill gases very effectively.

Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method (전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구)

  • Lee, H.M.;Park, J.H.;Hong, S.M.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.

Role of modified activated carbon by H3PO4 or K2CO3 from natural adsorbent for removal of Pb(II) from aqueous solutions

  • Manoochehri, Mahboobeh;Khorsand, Ameneh;Hashemi, Elham
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb(II) removal. The study was based on using powdered activated carbon, which was prepared from walnut shells generated as plant wastes and modified with potassium carbonate or phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb(II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich adsorption models. The kinetic study of Pb(II) on activated carbon from walnut shells was performed based on pseudo-first order and pseudo-second order equations. The data indicate that the adsorption kinetics follow the pseudo-second order rate. The procedure was successfully applied for Pb(II) removal from aqueous solutions.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Black 1 Using Coconut Shell-Based Granular Activated Carbon (야자각계 입상 활성탄의 Acid Black 1 염료 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Dong-Chang;Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.590-598
    • /
    • 2016
  • In this study, the adsorption behavior from aqueous solution as well as kinetic and thermodynamic parameters of Acid Black 1 were investigated through batch reaction using coconut shell based granular steam activated carbon. The effects of various adsorption parameters such as pH, initial concentration, contact time, temperature were studied. To confirm the effect of pH, pHpzc measurements were analyzed followed by measuring removal efficiencies of Acid Black 1 at the pH range from 3 to 11. Experimental equilibrium adsorption data were fitted using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption isotherm. The conformity of adsorption reaction for pseudo first and second order model were evaluated through kinetic analysis. Values of enthalpy change and activation energy were also investigated through thermodynamic analysis and it was confirmed that the adsorption process was endothermic. The spontaneity of adsorption process was evaluated using the values of entropy and Gibbs free energy changes.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.