• Title/Summary/Keyword: carbon oxides

Search Result 316, Processing Time 0.027 seconds

Studies on the Oxidative Rearrangement of Aziridine N-Oxides (아지리딘 N-옥시드의 酸性化 자리옮김 反應에 關한 硏究)

  • Se Chun Choi;Hyang Dong Jang
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 1983
  • Aziridine derivatives were utilized for the formation of aziridine N-oxides at low temperature, which were subject to easy decomposition and/or rearrangement like the protonated aziridines at room temperature. t-Butyl nitroso compound formed by the decomposition of N-oxide is easily characterized by its blue color and it is the major product in case that no branched alkyl groups are substituted on the carbon atoms of the aziridine ring and the stationary groups on the nitrogen are inert to rearrange the oxide such as the t-butyl group. The oxidative rearrangement products, however, are mainly formed when the substituents are methyl or ethyl group on the carbon atoms. It is interesting to see that the sigmatropic rearrangement of 2-ethyl aziridine gave only cis olefinic compound selectively in case that t-butyl group was substituted on the nitrogen, whereas N-hydroxy aziridine compounds were formed exclusively when t-butyl group was replaced with ethyl group.

  • PDF

Structural control, and Correlation of Uranium Distribution and Mineralogy of Meta-pelites in Ogcheon Terrain, Korea (한반도(韓半島) 옥천대(沃川帶)에 분포(分布)하는 함(含)우라늄층(層)의 지질구조규제(地質構造規制) 및 조성광물(組成鑛物)과 우라늄분포(分布)와의 상관관계연구(相關關係硏究))

  • Park, Bong-Soon;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.215-227
    • /
    • 1980
  • The rock units of Goesan area in the Ogcheon metamor phic terrain established on the basis of field criteria should be redefined into following sequence. Based on shear senses in secondary small structures which are usually observable in the investigated area, the stratigraphy can be lithologically divided into the lower pelite, pebbly mudstone, upper pelite, quartzite and psammite unit in ascending order. This conclusion is in discordance with a previous opinion; Munjuri formation and Guryongsan formation may be equivalent to upper pelite unit, Iwonri formation and Hwanggangri formation to pebbly mudstone. From this, it may be inferred that isoclinal overturned folds repeatly occur in the area. The uranium bearing coaly thin layers in upper pelite unit have relatively broad exposures in Deogpyeongri block of Goesan area along culmination zone in the central part of the investigated area. It is believed that structural feature in the block recognized complexly refolded synform plunging to southwest. Mineralogical and radiometric studies were made on 135 representative samples from the Ogcheon Group of Korea. The mineralogy of all black slate samples is qualitatively similar but quantitatively ·different. The uranium distribution in the studied area show approximately log normal. Uranium in the black slates of the Ogcheon Group was deposited together under same physico-chemical environmental conditions. The chemical and geological factors that controlled the abundance of organic carbon and iron oxides also controlled the uranium content. The relationship of the major components to uranium can be expressed by the following regression equation: $Log(U\times10^4+1)$= 1.70999-0.00367(quartz)0.00512(micas)-0.00930 (other silicates)+0.01911 (iron oxides)-0.03389(other opaques)+0.02062(organic carbon).

  • PDF

Micro Gas Turbine Performance using Catalytic Cracked Ethanol as Fuel (촉매 분해 에탄올을 연료로 사용하는 마이크로 가스터빈의 성능)

  • Choi, Songyi;Koo, Jaye;Yoon, Youngbin
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • In order to verify the possiblity of improving the combustion performance of ethanol using zeolite catalyst and the characteristics of nitrogen oxides and carbon monoxide emission, micro gas turbine experiments were performed using catalytic reaction products, ethanol and kerosene as fuels and the results were compared. The thrust of the catalytic reaction product was lower than that of kerosene, but it was improved by 5% on average compared with the use of ethanol. Nitrogen oxides and carbon monoxide emissions of the catalytic reaction products were measured to be very low overall compared to kerosene. As a result, when the ethanol was reformed using the zeolite catalyst, the engine performance could be improved while maintaining the environment friendliness of the ethanol.

A Study on Technology Status and Project of Hydrogen Production from Coal Gasificiation (석탄가스화를 이용한 수소생산 기술현황 및 프로젝트 분석)

  • Seungmo Ko;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Coal gasification is a process of incomplete coal combustion to produce a syngas composed of hydrogen and carbon monoxide. It is one of methods to utilize coal cleanly because the process does not emits nitrogen oxides or sulfur oxides and particulate matters. In addition, chemicals can be produced using syngas. Coal gasification is classified as IGCC (Integrated Gasification Combined Cycle), Plasma coal gasification and UCG (Underground Coal Gasification). Recently, WGS (Water Gas Shift) reactor and carbon capture system have been combined to gasifier to produce hydrogen from coal. In this study, the coal gasification and method of hydrogen production from syngas was summarized, and the hydrogen production from coal gasification project was investigated.

Evaluation of Air Pollutant Adsorption Performance of Potassium and Calcium Ion-Exchanged Zeolite (칼륨 및 칼슘 이온으로 치환된 제올라이트의 대기오염물질 흡착 성능 평가)

  • Ye Hwan Lee;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.313-317
    • /
    • 2023
  • In this study, the physicochemical characterization and adsorption performance of air pollutants (VOCs, SO2, and CO2) were evaluated for the recycling of zeolite used in the ion exchange process. The surface characteristics of the zeolite used were confirmed through Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis, and the composition and specific surface area were measured through X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET). There was no change in the surface properties of the used zeolite, but the content of potassium and calcium increased and the specific surface area decreased. The toluene, sulfur oxides, and carbon dioxide adsorption performance of the used zeolite was evaluated, and it was confirmed that the performance was improved compared to the fresh zeolite. In particular, for toluene and sulfur oxides, the adsorption amount increased by 2.6 times and 2.3 times, respectively, which might be due to the enhancement of the polymerization reaction and the increase of the base point, according to the composition of the used zeolite.

Effect of Mixing Ratio of n-heptane Fuel on the Combustion Characteristics of n-butanol Fuel (n-heptane 연료 혼합비에 따른 n-butanol 연료의 연소 특성)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.21-26
    • /
    • 2015
  • This study was performed to provide the information of the combustion characteristics of n-butanol fuel in accordance with the n-heptane fuel mixing ratio. The closed homogeneous reactor model was used for the analysis. The analysis conditions were set to 800 K of the initial temperature, 20 atm of initial pressure and 1.0 of equivalence ratio. The results of analysis were compared in terms of combustion temperature, combustion pressure, CO, Soot and $NO_X$ emissions. The results of combustion and exhaust emission characteristics showed that ignition delay was decreased and the combustion temperature was increased as the n-heptane mixing ratio was increased. Also, the carbon monoxide(CO) was slightly decreased however, the soot and nitrogen oxides($NO_X$) increased a little in accordance with the n-heptane fuel mixing ratio. In addition, the pressure difference was almost the same in any conditions.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

A Study on the Usability of Biodiesel Fuel Derived from Rice Bran Oil as an Alternative Fuel for IDI Diesel Engine

  • Ryu, Kyunghyun;Oh, Youngtaig
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.310-317
    • /
    • 2003
  • The world is faced with a problem of air pollution due to the exhaust emissions from automobile. Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of these problems. There are many alternative fuels studied in place of diesel fuel made from petroleum. Biodiesel fuel (BDF) is a domestically produced. renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of BDF, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in an IDI diesel engine. Emissions were characterized with a neat BDF and with a blend of BDF and conventional diesel fuel. Since the BDF includes oxygen of about 11 %, it could influence the combustion process strongly. Therefore, the use of BDF resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that BDF can be utilized effectively as a renewable fuel for IDI diesel engines.

A Study on the Estimation of Air Pollutants Emission Factors in Electric Power Plants (화력발전소의 대기오염물질 배출계수 산정 연구)

  • 김대곤;엄윤성;홍지형;이석조;석광설;이대균;이은정;방선애
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2004
  • The main purpose of this study was to characterize the air pollutants emission factors in electric power plant (EPP) using fossil fuels. The electric power plant is a major air pollution source, thus knowing the emission characteristics of electric power plant is very important to develop a control strategy. The major air pollutants of concern from EPP slacks are particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO) and heavy metals. Throughout the study, the following results are estimated - PM : 8.671E-05 ∼ 8.724E+01 PM emission (kg) per fuel burned (ton) - SOx : 4.149E-04∼7.877E+01 SOx emission (kg) per fuel burned (ton) - NOx 1.578E-02∼9.857E+00 NOx emission (kg) per fuel burned (ton) - CO : 3.800E-04∼1.291E+00 CO emission (kg) per fuel burned (ton) - Hg : 1.220E+01∼3.108E+02 Hg emission (mg) per fuel burned(ton) From the statistical analysis by Wilcoxon signed ranks test between the emission factors of ours and U.S. EPA's, we can yielded that : p 〉0.05.

A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics (원자층증착법으로 증착된 강유전성 플루오라이트 구조 강유전체 박막의 불순물 효과)

  • Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.169-181
    • /
    • 2020
  • The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.