• Title/Summary/Keyword: carbon oxides

Search Result 316, Processing Time 0.024 seconds

X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors

  • Lee, Jeong-Min;Kim, Ju-Wan;Lim, Ji-Sun;Kim, Tae-Jin;Kim, Shin-Dong;Park, Soo-Jin;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.120-126
    • /
    • 2007
  • The effect of cobalt precursor on the structure of Co supported multi-walled carbon nanotubes (MWCNTs) were studied by using X-ray photoelectron spectroscopy (XPS). MWCNTs were treated with a mixture of nitric and sulfuric acids and decorated with cobalt and/or cobalt oxides via aqueous impregnation solutions of cobalt nitrate or cobalt acetate followed by reduction in hydrogen. XPS was mainly used to investigate the phase of cobalt on MWCNTs after reduction with $H_2$ flow at $400^{\circ}C$ for 2 h. Higher cobalt-nanoparticle dispersion was found in the MWCNTS prepared via cobalt nitrate decomposition. A typical XPS spectrum of Co 2p showed the peaks at binding energy (BE) values equal to 781 and 797 eV, respectively. It is found that cobalt nitrate supported MWCNTs is more dispersive and have catalytic activity than that of cobalt acetate supported MWCNTs at same preparation condition such as concentration of precursor solution and reduction environment.

Electrochemical Performance of Activated Carbons/Mn3O4-Carbon Blacks for Supercapacitor Electrodes

  • Kim, Ki-Seok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2343-2347
    • /
    • 2013
  • In this work, manganese dioxide ($Mn_3O_4$)/carbon black (CB) composites (Mn-CBs) were prepared by an in situ coating method as electrical fillers and the effect of the Mn-CBs on the electrical performance of activated carbon (AC)-based electrodes was investigated. Structural features of Mn-CBs produced via in situ coating using a $KMnO_4$ solution were confirmed by XRD and TEM images. The electrical performances, including cv curves, charge-discharge behaviors, and specific capacitance of the ACs/Mn-CBs, were determined by cyclic voltammograms. It was found that the composites of $Mn_3O_4$ and CBs were successfully formed by in situ coating method. ACs/Mn-CBs showed higher electrical performance than that of AC electrodes fabricated with conventional CBs due to the pesudocapacitance reaction of manganese oxides in the aqueous electrolyte. Consequently, it is anticipated that the incorporation of $Mn_3O_4$ into CBs could facilitate the utilization of CBs as electrical filler, leading to enhanced electrochemical performance of AC electrodes for supercapacitors.

MOLECULAR FORMATION IN SUNSPOTS

  • Lee, H.M.;Kim, D.W.;Yun, H.S.;Beebe, R.;Davis, R.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.19-35
    • /
    • 1981
  • Calculations of molecular number densities as a function of optical depth in selected umbral, penumbral and photospheric models predict penumbral enhancement of diatomic molecules containing carbon atoms, strong umbral enhancement of oxides, and moderate umbral enhancement of hydrides. The role of CO formation in an oxygen rich atmosphere is discussed.

  • PDF

A Study on the Episodes of Ozone in Seoul Metropolitan Area (수도권지역의 고농도 오존사례에 관한 연구)

  • 이종범;방소영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.366-367
    • /
    • 1999
  • 오존과 같은 광화학 오염물질의 특징 중의 하나는 도시나 공업단지 등의 차량이나 공장 등으로부터 초기에 배출된 질소산화물(NO$_{x}$ :Oxides of nitrogen), 비메탄계 유기화합물(NMOC:non-methan organic carbon), 알데히드류(RCHO, HCHO 등)와 같은 1차 오염물질이 바람을 따라 풍하측으로 이동하면서 광화학반응을 일으켜 풍하측의 도시에 고농도의 오존을 발생시키는 것이다.(중략)

  • PDF

Catalytic Activity of Mn Oxides for VOCs Removal (VOCs 처리를 위한 망간산화물 촉매 활성)

  • 서성규;윤형선;김상채
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.425-426
    • /
    • 2002
  • VOCs 처리 기술로서 촉매연소의 경우 저온에서 처리가 가능하여 처리비용 절감 등의 효과를 고려할 때 가장 경제적인 방법으로 평가되고 있다. 촉매연소를 이용한 VOCs 처리는 고가의 귀금속(Pt, Pd 등)을 담지한 담체(carbon black, SiO$_2$, $Al_2$O$_3$, TiO$_2$ 등)형 촉매가 사용되고 있다(Guisnet, et al, 1999). (중략)

  • PDF

Band Gap Energy Engineering of Electron Emission Layer of ac-PDPs

  • Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.262-264
    • /
    • 2009
  • Ternary oxides with controlled band gap energy and reduced reactivity against moisture and carbon dioxide gas were designed and studied as a potential material for protective layer of ac-PDPs. The results showed a significant reduction in firing voltage and improved environmental stability.

  • PDF

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Removal of arsenic from aqueous phase using magnetized activated carbon and magnetic separation

  • Kwon, H.W.;Shin, T.C.;Kim, J.J.;Ha, D.W.;Kim, Min Gyu;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2018
  • Arsenic (As) is one of the elements having most harmful impact on the human health. Arsenic is a known carcinogen and arsenic contamination of drinking water is affecting on humans in many regions of the world. Adsorption has been proved most preferable technique for the removal of arsenic. Many researchers have studied various types of solid materials as arsenic adsorbent, and iron oxide and its modified forms are considered as the most effective adsorbent in terms of adsorption capacity, recovery, and economics. However, most of all iron oxides have small surface area in comparing with common adsorbents in environmental application such as activated carbon but the activated carbon has weak sorption affinity for arsenic. We have used an activated carbon as base adsorbent and iron oxide coating on the activated carbon as high affinity sorption sites and giving magnetic attraction ability. In this study, adsorption properties of arsenic and magnetic separation efficiency of the magnetized activated carbon (MAC) were evaluated with variable iron oxide content. As the iron oxide content of the MAC increased, adsorption capacity has also gradually increased up to a point where clogging by iron oxide in the pore of activated carbon compensate the increased sorption capacity. The increase of iron oxide content of the MAC also affected magnetic properties, which resulted in greater magnetic separation efficiency. Current results show that magnetically modified common adsorbent can be an efficiency improved adsorbent and a feasible environmental process if it is combined with the magnetic separation.

High Temperature Thermochemical Treatment and Characterization of Sepiolite for $CO_2$ Storage ($CO_2$ 저장용 Sepiolite의 고온 열화학처리 및 특성평가)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.425-433
    • /
    • 2006
  • Sepiolite was selected as a mineral carbonation candidate ore for carbon dioxide sequestration. Carbonation salt formation from alkaline earth metal ingredient needs to dehydroxylation of sepiolite at high temperature. An evident dehydroxylation was observed over $800^{\circ}C$ and the variations of sepiolite characteristics after high temperature treatment was synthetically evaluated. Remarkable weight loss were measured after high temperature thermochemical reaction then crystallographic and spectroscopic changes were analyzed. The resulted alkaline earth metal oxides could explained by dehydroxylation based on thermochemical reaction.

Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes (표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF