• Title/Summary/Keyword: carbon neutral

Search Result 352, Processing Time 0.024 seconds

Promotion of the Low-carbon Agriculture Certification System (저탄소 농축산물 인증제 활성화 방안에 관한 연구)

  • Lim, Sung-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.201-219
    • /
    • 2016
  • To internalize climate-related external costs from agricultural production and food consumption Pigou taxes and carbon credits increase private costs for food. Voluntary GHG reduction program for carbon-neutral food can be advantageous over such policy measures since they avoid higher food prices for the poor. The pilot project of low-carbon agriculture certification system is to reduce GHG emissions from agricultural production and enhance the competitiveness of domestic agricultural products. This study examines producers', distributors', and consumers' perceptions of the low-carbon agriculture certification system and analyzes alternatives to promote the low-carbon certificated agricultural products.

The Path to Life Cycle Carbon Neutrality in High Rise Buildings

  • Drew, Chris;Quintanilla, Natalia
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.4
    • /
    • pp.333-343
    • /
    • 2017
  • Across the world, building energy codes are becoming stricter, demanding higher levels of energy performance with each issuance. Some locations have taken initiatives to eliminate operational emissions altogether by requiring buildings to be carbon neutral. However, while the objectives of carbon neutrality are without doubt statement worthy, we believe that once operational performance has been tackled to a reasonable level of performance the sights should be trained on a different objective-life; cycle carbon. This paper defines what we mean by life cycle carbon neutrality and presents an approach toward reducing it.

Effects of Neutral Salts on Alkaline Hydrolysis of Poly(ethylene terephthalate) (II) - Anionic Effect - (중성염이 Poly(ethylene terephthalate) 직물의 알칼리 가수분해에 미치는 영향(II))

  • Do, Sung-Guk;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.10-16
    • /
    • 1994
  • Neutral salts have negative or positive effects on the rates of many chemical reactions and also on the rates of acidic and alkaline hydrolysis of carboxylic esters. The direction of neutral salt effects on the hydrolysis of ester depends on the charge of esters. Neutral salts accelerate alkaline hydrolysis of esters with negative charge, but decelerate alkaline hydrolysis of esters with positive charge, and have little effect on the alkaline hydrolysis of neutral esters. It is expected that the rate of the alkaline hydrolysis of Poly(ethylene terephthalte) (PET), polymeric solid carboxylic polyester with carboxyl end group at the polymer end, is also influenced positively by neutral salts. In the present work, to clarify the mechanism of the neutral salt effect on the alkaline hydrolysis of PET, many salts with different anions like NaF, NACl, NaBr, NaI were added to the aqueous alkaline solutions. Then PET was hydrolyzed with aqueous solutions of many salts in alkali metal hydroxides under various conditions. Some conclusions obtained from the experimental results were summarized as follows. The reaction rate of the alkaline hydrolysis of PET was increased by the addition of neutral salts and In k was increased nearly linearly with the square root of ionic strength of reaction medium. This fact suggested that the ionic strength effect by Debye-Huckel and Bronsted theory was exerted on the reaction. The specific salt effect was also observed. The reaction rate was increased with the decrease in the nucleophilicity of anions of neutral salts, i.e., in the order of $F^-$ <$Cl^-$<$Br^-$<$I^-$. It was thought that the reaction rate was increased in the order of $F^-$ <$Cl^-$<$Br^-$<$I^-$. because the completion of anions with $OH^-$ for carbonyl carbon became weaker with the decrease in the nucleophilicity and with the increase in the size of anions.

  • PDF

Combustion characteristics of diesel engine with bio-ethanol blend fuel (바이오 에탄올 혼합유에 대한 디젤기관의 연소특성)

  • Jung, Suk-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.2
    • /
    • pp.114-121
    • /
    • 2009
  • There are increased in using the bio-ethanol, as the carbon neutral attracts many researchers due to a reduction in carbon dioxide spotted as the global warming gas. A gasoline engine with 100% of the bioethanol was developed and used in Brazil already, but researches of using the bio-ethanol in diesel engines are lack. In this study, combustion tests with blend fuel of the gas oil and bio ethanol by 50% maximally due to a low cetane number of bio-ethanol were accomplished as a basic study of introduction of using the bioethanol in diesel engines. The result was that smoke emission was decreased with increase in proportion of the bio-ethanol, due to the increase of a amount of pre-mixed combustion with ignition delay. Although the amount of $CO_2$ is reduced according as the bio-ethanol is used(carbon neutral), the emission of $CO_2$ with increase in the proportion of the bio-ethanol was more increased due to lower a heat value of bio-ethanol than gas oil.

Domestic applicability of MT-based deep underground resource exploration based on the Australia Olympic Dam case (호주 Olympic Dam 사례를 바탕으로 한 MT 기반 심부 지하 광물자원 탐사의 국내 적용성)

  • Jeong, DongHo;Ryu, KyeongHo;Oh, SeokHoon
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.21-24
    • /
    • 2021
  • In this study, the development and production of electric vehicles and hydrogen vehicles are presented as a method for realizing carbon-neutral. Accordingly, the demand and need for development of underground metal mineral resources such as copper and nickel has increased. The research was carried out using MT survey, which is very useful for deep exploration such as mineral resources and oil exploration because of it's low cost and explorable depth. In Korea, there are very few cases of MT exploration in terms of mineral development, so the study was conducted based on the MT exploration conducted previously in AusLAMP, Australia. Through comparative analysis of the MT exploration data conducted to identify the ore body in the deep area of the Olympic Dam in Australia, with the data directly calculated in 2D inversion, it was confirmed that it can have a positive effect on the possibility of resource development and carbon neutrality using MT exploration in Korea.

Microbial Production of Bacterial Cellulose Using Chestnut Shell Hydrolysates by Gluconacetobacter xylinus ATCC 53524

  • Jeongho Lee;Kang Hyun Lee;Seunghee Kim;Hyerim Son;Youngsang Chun;Chulhwan Park;Hah Young Yoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1479-1484
    • /
    • 2022
  • Bacterial cellulose (BC) is gaining attention as a carbon-neutral alternative to plant cellulose, and as a means to prevent deforestation and achieve a carbon-neutral society. However, the high cost of fermentation media for BC production is a barrier to its industrialization. In this study, chestnut shell (CS) hydrolysates were used as a carbon source for the BC-producing bacteria strain, Gluconacetobacter xylinus ATCC 53524. To evaluate the suitability of the CS hydrolysates, major inhibitors in the hydrolysates were analyzed, and BC production was profiled during fermentation. CS hydrolysates (40 g glucose/l) contained 1.9 g/l acetic acid when applied directly to the main medium. As a result, the BC concentration at 96 h using the control group and CS hydrolysates was 12.5 g/l and 16.7 g/l, respectively (1.3-fold improved). In addition, the surface morphology of BC derived from CS hydrolysates revealed more densely packed nanofibrils than the control group. In the microbial BC production using CS, the hydrolysate had no inhibitory effect during fermentation, suggesting it is a suitable feedstock for a sustainable and eco-friendly biorefinery. To the best of our knowledge, this is the first study to valorize CS by utilizing it in BC production.