• 제목/요약/키워드: carbon nanotubes (CNT)

검색결과 548건 처리시간 0.035초

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2013
  • Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.

전기장을 이용한 탄소나노튜브 카트리지 연구 (A Study on the Carbon Nanotube Cartridges Using Electric Field)

  • 최재성;곽윤근;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1164-1167
    • /
    • 2005
  • This paper is about the carbon nanotube(CNT) samples called as CNT cartridges. The CNT cartridges are useful to make it better to fabricate the nano-sized devices like nanoprobes and nanotweezers through physical attachment. To make these cartridges, we need to align CNTs and to purify them from raw material. There is a variety of methods to align 1-dimensional nanostructures like nanotubes and nanowires. In this review, we mainly focused on the methods using electric field. And we will introduce various researches in relation to the CNT cartridges and the fabrication methods using the CNT cartridges and nanomanipulation techniques.

  • PDF

Charge Transport at the Interfaces between Carbon Nanotube and Wetting Metal Leads Mediated via Topological Defects

  • Ko, Kwan Ho;Kim, Han Seul;Kim, Hu Sung;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.179.2-179.2
    • /
    • 2014
  • Carbon nanotubes (CNT)-metal contacts play an important role in nanoelectronics applications such as field-effect transistor (FET) devices. Using Al and (10,0) CNT, we have recently showed that the CNT-metal contacts mediated via topological defects within CNT exhibits intrinsically low contact resistance, thanks to the preservation of the sp2 bonding network at the metal-CNT contacts.[1] It is well-established that metals with good wetting property such as Pd consistently yield good contacts to both metallic and semiconducting CNTs. In this work, the electronic and charge transport properties of the interfaces between capped CNT and Pd will be investigated based on first-principles computations and compared with previous results obtained for the Al electrodes.

  • PDF

Fabrication Process and Properties of Carbon Nanotube/Cu Nanocomposites

  • Cha, Seung-I.;Kim, Kyung-T.;Mo, Chan-B.;Hong, Soon-H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.366-367
    • /
    • 2006
  • Carbon nanotubes (CNTs) have attracted remarkable attention as reinforcement for composites owing to their outstanding mechanical properties. The CNT/Cu nanocomposite is fabricated by a novel fabrication process named molecular level process. The novel process for fabricating CNT/Cu composite powders involves suspending CNTs in a solvent by surface functionalization, mixing Cu ions with CNT suspension, drying, calcination and reduction. The molecular level process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The mechanical properties of CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows about 3 times higher strength and 2 times higher Young's modulus than those of Cu matrix.

  • PDF

탄소나노튜브의 분산이 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향 (Effect of CNT Particle Dispersion in CNT Paste on Field Emission Characteristics in Carbon Nanotube Cathode)

  • 안병건;성명석;신허영;김동희;김태식;조영래
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.807-812
    • /
    • 2004
  • The uniformity of emission mage and field emission properties of carbon nanotube(CNT) cathodes dependence on CNT particle dispersion were investigated for field emission displays. We used multi-walled carbon nanotubes (MWNTs) synthesized by CVD method as the field emitter materials. CNT dispersion in CNT ink was carried out by ultrasonication and shaking methods. According to CNT dispersion conditions, the uniformity of emission image and field emission properties of CNT cathodes were greatly affected. The smaller particles of filler materials and CNT powders provide the better properties of the CNT cathodes.

Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation

  • Song Young Seok;Youn Jae Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.201-212
    • /
    • 2004
  • Properties of polymer based nanocomposites depend on dispersion state of embedded fillers. In order to examine the effect of dispersion state on rheological properties, a new bi-mode FENE dumbbell model was proposed. The FENE dumbbell model includes two separate ensemble sets of dumbbells with different fric­tion coefficients, which simulate behavior of well dispersed and aggregated carbon nanotubes (CNTs). A new parameter indicating dispersion state of the CNT was proposed to account for degree of dispersion quantitatively as well as qualitatively. Rheological material functions in elongational, steady shear, and oscillatory shear flows were obtained numerically. The CNT/epoxy nanocomposites with different dis­persion state were prepared depending on whether a solvent is used for the dispersion of CNTs or not. Dis­persion state of the CNT in the epoxy nanocomposites was morphologically characterized by the field emission scanning electronic microscope and the transmission electron microscope images. It was found that the numerical prediction was in a good agreement with experimental results especially for steady state shear flow.

자기촉매 특성을 이용한 탄소나노튜브의 연소합성 연구 (Combustion synthesis of carbon nanotubes using their self-catalytic behavior)

  • 우상길;홍영택;권오채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1815-1820
    • /
    • 2008
  • Self-catalytic behavior of combustion-synthesized carbon nanotubes (CNTs) is evaluated using a double-faced wall stagnation flow burner with a CNT-deposited stainless steel plate wall. CNT formation is observed using field-emission scanning and transmission electron microscopies and Raman spectroscopy. A self-catalytic behavior of multi-walled CNTs (MWCNTs) shows the enhanced ratio of channel diameter to tube wall thickness and the enhanced intensity ratio of G-band to D-band in Raman spectroscopy, implying that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via a CNT self-catalytic flame-synthesis process. Thus, using a DWSF burner through the self-catalytic process has potential in mass production of CNTs having much improved quality.

  • PDF

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.

SWCNT/Nafion 복합체의 분산능 향상을 통한 IPMC의 기계적 특성 향상 (Improvement of Mechanical Properties of IPMC through Developing a Degree of Dispersion of SWCNT/Nafion Composite)

  • 권희준;김하나;강정호
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.131-136
    • /
    • 2011
  • Many researchers are recently studying about Electroactive polymer(EAP). But it has a physical limitation, because of property of material. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. This study focuses on the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. To come up with mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we dispersed Single-walled carbon nanotubes(SWCNTs). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. We fabricated a disperse SWCNT/Nafion composite uniformly. Through the use of the E-beam evaporator to form an uniform electrode layer, we consummated the IPMC actuator. This result shows improving 1.5 times mechanical properties about driving force in IPMC.

보조에너지원으로서의 수퍼커패시터용 나노전극소재로서의 탄소/망간산화물의 전기화학적 특성 (Electrochemical Properties of Manganese Oxide coated onto Carbon Nanotubes for Energy Storage Applications)

  • 안균영;마상복;김광범
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.143-146
    • /
    • 2007
  • Birnessite-type manganese dioxide($MnO_2$) was coated uniformly onto carbon nanotubes (CNTs) through a spontaneous direct redox reaction between CNTs and permanganate ions($MnO_4\;^-$). The initial specific capacitance of the $MnO_2/CNT$ nanocomposite in an organic electrolyte at a large current density of 1 A/g was 250 F/g, which is equivalent to 139 mAh/g based on the total weight of the electrode material including the electroactive material, conducting agent and binder. The specific capacitance of the $MnO_2$ in the $MnO_2/CNT$ nanocomposite was as high as 580 F/g (320 mAh/g), indicating excellent electrochemical utilization of the $MnO_2$. The addition of CNTs as a conducting agent can improve the high rate capability of $MnO_2/CNT$ nanocomposite considerably. An analysis of the in-situ X-ray absorption near-edge structure (XANES) showed an improvement in the structural and electrochemical reversibility of the $MnO_2/CNT$ nanocomposite by heat-treatment.

  • PDF