• Title/Summary/Keyword: carbon nanotube mat

Search Result 2, Processing Time 0.017 seconds

Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure

  • Noh, Ye Ji;Kim, Han Sang;Kim, Seong Yun
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.243-247
    • /
    • 2012
  • A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of $2.1{\Omega}$. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S $m^{-1}$, where the weight fraction of the CNT mat was 36.5%.

NO2 gas sensing characteristics of patterned carbon nanotube mats (패턴이 형성된 탄소나노튜브 매트의 이산화질소 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Paek, Kyeong-Kap;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.199-204
    • /
    • 2006
  • Carbon nanotube (CNT) mats grown by thermal chemical vapor deposition on a micromachined substrate with a chrome heater and a diaphragm were investigated as sensing materials of resistive gas sensors for nitrogen dioxide ($NO_{2}$) gas. The aligned CNT mats fabricated into mesh and serpentine shapes by the patterned cobalt catalyst layer. CNT mats showed a p-type electrical resistivity with decreasing electrical resistance upon exposure to $NO_{2}$. All sensors exhibited a reversible response at a thermal treatment temperature of $130^{\circ}C$ for about 5 minutes. The resistance change to $NO_{2}$ of the mesh-shaped CNT mats was larger than that of the serpentine-shaped CNT mats.