• Title/Summary/Keyword: carbon nanoparticle

Search Result 149, Processing Time 0.027 seconds

Stability and Thermo-physical Properties of Nanofluids and Its Applications (나노유체의 분산안정성 및 열물성치와 그 응용에 관한 연구)

  • Hwang, Y.;Lee, K.;Kim, K.;Lee, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.474-478
    • /
    • 2008
  • It has been shown that a nanofluid consisting of nanoparticles dispersed in base fluid has much higher effective thermal conductivity than pure fluid. In this study, four kinds of nanofluids such as multiwalled carbon nanotube (MWCNT) in water, CuO in water, SiO2in water, and CuO in ethylene glycol, are produced. Their thermal conductivities are measured by a transient hot-wire method. The thermal conductivity of water-based MWCNT nanofluid is shown to be increased by up to 11.3% at a volume fraction of 0.01. The measured thermal conductivities of MWCNT nanofluids are higher than those calculated with Hamilton-Crosser's model due to neglecting solid-liquid interaction at the interface. The results show that the thermal conductivity enhancement of nanofluids depends on the thermal conductivities of both particles and the base fluid. Stability of nanofluids is estimated by UV-vis spectrum analysis. Stability of nanofluid depends on the type of base fluid and the suspended particles. Also it can be improved in addition of a surfactant.

  • PDF

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • Yun, Seok-Bon;Park, Dae-Geun;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Synthesis of Single-walled Carbon Nanotubes with a Narrow Diameter Distribution via Size-controlled Iron Oxide Nanoparticle Catalyst

  • Kim, Seong-Hwan;Song, U-Seok;Kim, Yu-Seok;Lee, Su-Il;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.568-568
    • /
    • 2012
  • 뛰어난 물리적, 전기적 특성을 가진 단일벽 탄소나노튜브는 여러 분야에서 응용 가능성이 매우 높은 물질이다. 그러나 단일벽 탄소나노튜브의 전기적 특성은 나노튜브의 직경과 카이랄리티(chirality)에 매우 강하게 의존되기 때문에 균일한 직경과 카이랄리티를 갖는 단일벽 탄소나노 튜브만의 사용은 나노튜브 기반의 전자소자 응용에서 매우 중요하다. 균일한 직경과 카이랄리티의 단일벽 탄소나노튜브를 얻는 방법은 나노튜브 합성을 통한 직접적인 방법과 후처리 기술을 통해 가능하며, 최근에는 금속 나노입자를 촉매로서 화학기상증착(Chemical vapor deposition, CVD)을 이용하여 좁은 직경 분포를 갖는 단일벽 탄소나노튜브의 합성이 보고되었다. 화학기상 증착은 용이하게 단일벽 탄소나노튜브를 합성하며, 성장된 나노튜브의 직경은 촉매금속 나노입자의 크기에 의해 결정된다. 본 연구는 크기가 제어된 산화철 나노입자를 촉매금속으로 사용하여 열화학기상증착법을 이용해 직경분포가 매우 좁고 균일한 단일벽 탄소나노튜브를 합성하였다. 합성된 단일벽 탄소나노튜브 직경과 카이랄리티는 라만 분광법(Raman spectroscopy)과 투과 전자현미경(Transmission electron microscope)을 이용하여 분석하였다.

  • PDF

Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices

  • Christwardana, Marcelinus;Chung, Yongjin;Tannia, Daniel Chris;Kwon, Yongchai
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2421-2429
    • /
    • 2018
  • Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant ($k_s$) is $9.1{\pm}0.1s^{-1}$ and the value is 26% higher than that of catalyst that does not use the anchor structure.

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode

  • Kim, Jin Koo;Park, Gi Dae;Kang, Yun Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.

Synthesis of Silver Nanoparticles using Pulse Electrolysis in 1-n-butyl-3-methylimidazolium Chloride Ionic Liquid

  • Jeonggeun Jang;Jihee Kim;Churl Kyoung Lee;Kyungjung Kwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • Ionic liquids are considered as a promising, alternative solvent for the electrochemical synthesis of metals because of their high thermal and chemical stability, relatively high ionic conductivity, and wide electrochemical window. In particular, their wide electrochemical window enables the electrodeposition of metals without any side reaction of electrolytes such as hydrogen evolution. The electrodeposition of silver is conducted in 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid system with a silver source of AgCl. This study is the first attempt to electrodeposit silver nanoparticles without using co-solvents other than [C4mim]Cl. Pulse electrolysis is employed for the synthesis of silver nanoparticles by varying applied potentials from -3.0 V to -4.5 V (vs. Pt-quasi reference electrode) and pulse duration from 0.1 s to 0.7 s. Accordingly, the silver nanoparticles whose size ranges from 15 nm to ~100 nm are obtained. The successful preparation of silver nanoparticles is demonstrated regardless of the kinds of substrate including aluminum, stainless steel, and carbon paper in the pulse electrolysis. Finally, the antimicrobial property of electrodeposited silver nanoparticles is confirmed by an antimicrobial test using Staphylococcus aureus.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.

SO2 Adsorption Characteristics of PAN-based Activated Carbon Fiber Impregnated with Palladium and Gold Nanoparticles (팔라듐과 금 나노입자를 첨착한 PAN계 활성탄소섬유의 SO2 흡착특성)

  • Lee, Jin-Jae;Jun, Moon-Gue;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.467-474
    • /
    • 2007
  • The palladium and gold nanoparticles containing PAN-based active carbon fiber (ACF) with a high specific surface area were prepared. Using the BET, TEM, FE-SEM, and XPS, their specific surface area and pore volume, pore structure, and the change in surface oxygen groups with time were analyzed and $SO_2$ adsorption performances were investigated. Because of the impregnating process, the micropore volume was mostly decreased from 95.5% to 30.5~43.7% compared with the total pore volume. And the change in surface oxygen groups with time was higher for the metal salt than the nanoparticles. Also, $SO_2$ breakthrough time of PAN-ACFs impregnated with Au nanoparticles and metal salts did not change compared with that of the non-impregnated PAN-ACF. But the PAN-ACF impregnated with Pd nanoparticles (100 ppm) showed good $SO_2$ adsorption performance as the breakthrough time of 880 sec. These results indicated that the $SO_2$ adsorption performance depended on the change in surface oxygen groups with time and the moderate impregnation of Pd nanoparticles on the PAN-ACF caused the increase in the $SO_2$ adsorption performance by a catalytic action.

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

Isolation and Characterization of Bacterial Cellulose-Producing Bacteria for Silver Nanoparticle Synthesis (은 나노입자 합성을 위한 Bacterial Cellulose 생산 세균의 분리 및 특성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Son, Yong-Jun;Park, Soo-Yeun;Son, Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.120-126
    • /
    • 2018
  • As a basic study for environment-friendly production of bacterial cellulose (BC) dressing with antimicrobial activity, we isolated and identified acetic acid bacteria which are resistant to silver ions and can biosynthesize silver nanoparticles. Furthermore, conditions of BC production by selected strain were also investigated. Strain G7 isolated from decayed grape skin was able to grow in the presence of 0.1 mM $AgNO_3$ which was identified as Acetobacter intermedius based on 16S rRNA gene analysis. BC production was the highest in a medium containing 2% glucose as a carbon source, 2% yeast extract as a nitrogen source, and 0.115% acetic acid as a cosubstrate. Structural properties of BC produced in optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer, and it was found that BC produced was cellulose type I that was the same as a typical native cellulose. When strain G7 was cultured in an optimal medium containing 0.1 mM $AgNO_3$, the color of the culture broth turned into reddish brown, indicating that silver nanoparticles were formed. As a result of UV-Vis spectral analysis of the culture, it was found that a unique absorption spectrum of silver nanoparticles at 425 nm was also observed. Scanning electron microscopic observations showed that silver nanoparticles were formed on the surface and pores of BC membrane.