• Title/Summary/Keyword: carbon nanomaterials

Search Result 171, Processing Time 0.023 seconds

Surface wave excited plasma CVD technologies for the synthesis of carbon nanomaterials (카본 나노재료 합성을 위한 표면파 플라즈마 CVD 기술)

  • Kim, Jaeho
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.16-26
    • /
    • 2015
  • Carbon nanomaterials including nanocrystalline diamond and graphene films are expected to play a core role in $21^{st}$ century industries due to their amazing physicochemical properties. To achieve their practical utilization and industrialization, the development of their mass production technologies is strongly required. Recently, a surface wave excited plasma (SWP) which is produced using microwaves has been attracting special attentions as a candidate for the mass production technology of carbon nanomaterials. SWP can allow a low-temperature large-area plasma chemical vapor deposition (CVD) system. Here, this article introduces the promising SWP-CVD technology. Plasma characteristics in a SWP will be introduced in detail to help understanding how to use and control a SWP as a plasma source for CVD applications.

Properties of Cement Mortar with Graphene Oxide and Admixture (산화 그래핀과 혼화제를 혼입한 시멘트 모르타르의 특성)

  • Kim, Wan-Su;Park, Chang-Gun;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.261-262
    • /
    • 2023
  • Nanomaterials are being actively studied in the fields of cement and concrete. However, research on other nanomaterials is insufficient because much of the carbon-based nanomaterials are made up of carbon nanotubes. Therefore, in this study, carbon-based water-soluble graphene oxide was mixed into mortar according to the cement replacement rate to conduct a characteristic evaluation. As a result, as the substitution rate of graphene oxide increased, workability decreased, and there was no effect of enhancing compressive strength. In addition, it was confirmed that the compressive strength decreased due to a large amount of air bubbles when the mixture was mixed for the purpose of improving workability.

  • PDF

Technology Trend for Carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 탄소 나노재 수소저장 기술 동향)

  • Park, Soo-Jin;Lee, Young-Seak;Kang, Kyung-Seok;Choi, Mi-Jeong;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • There are several materials for the hydrogen storage such as hydrogen storage alloy, carbon nanomaterials, non-carbon nanomaterials, compounds etc. Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials having high storage capacity and stability. In this paper, the patents concerning the carbon nanomaterial hydrogen storage method were gathered and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2006. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Effects of nanomaterials on hydration reaction, microstructure and mechanical characteristics of cementitious nanocomposites: A review

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Application of nanomaterials to cementitious composites has been attempted with the rapid development of nanotechnology since the 1990s. Various nanomaterials such as carbon nanotube, graphene, nano-SiO2, nano-TiO2, nano-Al2O3, nano-Clay, and nano-Magnetite have been applied to cementitious composites to improve the mechanical properties and the durability, and to impart a variety of functionality. In-depth information on the effect of nanomaterials on the hydration reaction, the microstructure, and the mechanical properties of cementitious nanocomposites is provided in the present study. Specifically, this paper mostly deals with the previous studies on the heat evolution characteristics of cementitious nanomaterials at an early age of curing, and the pore and the compressive strength characteristics of cementitious nanocomposites. Furthermore, the effect of nanomaterials on the cementitious nanocomposites was systematically discussed with the reviews.

Toxicity of Nanomaterials and Strategy of Risk Assessment (나노물질의 독성과 위해성평가 전략)

  • Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.259-271
    • /
    • 2005
  • Engineered nanoparticles exhibit a variety of unique and tunable chemical and physical properties. These unique properties make the nanoparticles central components and widespread potential applications in nanoindustry. However, the potential toxicities of nanoparticles have not been fully evaluated. Recently, the impacts of nanoparticles to human and environment became the emerging issue of toxicology. In this article, physicochemical properties and toxicities of carbon nanotube, fullerene, quantum dots, and other types of nanomaterials were reviewed and the strategy of risk assessment were suggested based on the frame of chemical assessment.