• 제목/요약/키워드: carbon nanomaterials

검색결과 170건 처리시간 0.024초

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성 (Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch)

  • 김준우;정구환
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

그래핀나노플레이트 나노복합소재 분산법 연구 동향 (A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion)

  • 박상유;황지영;박영수;강승범
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.321-328
    • /
    • 2020
  • 최근 다양한 분야에서 활용하기 위한 고분자 나노복합소재 개발이 활발히 진행되고 있다. 2차원 나노소재 중 물성이 우수하다고 알려진 신소재인 그래핀나노플레이트를 활용하여 고분자 기지와 복합소재를 제조할 때 강한 응집현상이 일어나기 때문에 우선적으로 분산 문제를 해결하고자 하는 요구가 높아지고 있다. 본 리뷰 논문에서는 그래핀나노플레이트의 다양한 분산법을 사용하여 분산성이 향상된 탄소 나노복합소재 제조에 대한 연구를 소개하고자 한다. 고분산성을 통해 물성이 향상된 탄소 나노복합소재는 앞으로 더욱 다양한 분야에서 널리 활용될 것이다.

탄소나노튜브 성장 실험실에서 CVD 밀폐 여부에 따른 공기 중 나노입자 농도 비교 (Comparison of Airborne Nanoparticle Concentrations between Carbon Nanotubes Growth Laboratories based on Containment of CVD)

  • 하주현;신용철
    • 한국산업보건학회지
    • /
    • 제20권3호
    • /
    • pp.184-191
    • /
    • 2010
  • Although the usage of nanomaterials including carbon nanotubes (CNTs) has increased in various fields, scientific researches on workers' exposures and controls of these materials are very limited. The purpose of this study was to compare the airborne nanoparticles concentrations from two university laboratories conducting experiments of CNTs growth based on containment of thermal chemical vapor deposition (CVD). Airborne nanoparticle concentrations in three metrics (surface area concentration, particle number concentration, and mass concentrations) were measured by task using three direct reading instruments. In a laboratory where CVD was not contained, the surface area concentration, number concentration and mass(PM$_1$) concentration of airborne nanoparticles were 1.5 to 3.5 times higher than those in the other laboratory where CVD was confined. The ratio of PM$_1$ concentration to total suspended particles(TSP) in the laboratory where CVD was not confined was about 4 times higher than that in the other laboratory. This indicates that CVD is a major source of airbone nanoparticles in the CNTs growth laboratories. In conclusion, researchers performing CNTs growth experiments in these laboratories were exposed to airborne nanoparticles levels higher than background levels, and their exposures in a laboratory with the unconfined CVD were higher than those in the other laboratory with the confined CVD. It is recommended that in the CNTs growth laboratories adequate controls including containment of CVD be implemented for minimizing researchers' exposures to airborne nanoparticles.

용매증발기반 자기조립을 이용한 단일벽 탄소나노튜브 정렬 및 트랜지스터 응용 (Evaporative Self-Assembly of Single-Walled Carbon Nanotubes for Field Effect Transistor)

  • 강석희;정도영;엄성운;황청석;홍석원
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.453-461
    • /
    • 2013
  • Controlling the stick and slip motions of the contact lines in a confined geometry comprised of a spherical lens with a flat substrate is useful for manufacturing polymer ring patterns. We used a sphere on a flat geometry, by which we could control the interfaces of the solution, vapor and substrate. By this method, hundreds of concentric ring-pattern formations of a linear conjugated polymer, poly [2-methoxy-5-(2-thylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), were generated with excellent regularity over large areas after complete solvent evaporation. Subsequently, the MEH-PPV ring patterns played a role as a directed template to organize highly regular concentric rings of single-walled carbon nanotubes(SWCNTs); when a droplet of the SWCNT suspension in water was casted onto the prepared substrate, hydrophobic polymer patterns confined the water dispersed SWCNTs in between the hydrophilicized $SiO_2/Si$ substrate. As the solvent evaporated, SWCNT-rings were formed in between MEH-PPV rings with controlled density. Finally, we used a lift-off process to produce SWCNT patterns by the removal of a sacrificial polymer template with organic solvent. We also fabricated a field effect transistor using self-assembled SWCNT networks on a $SiO_2/Si$ substrate.

사회연결망 분석을 활용한 나노기술 연구동향 국가간 비교분석: 탄소나노소재분야 중심 (Comparative Analysis of Co-Authorship and Keyword Network for Nanotechnology: Carbon Nanomaterials Field)

  • 배성훈;김재신;신광민;윤진선;강상규;김준현;이정우;김민관;한창희
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.172-184
    • /
    • 2017
  • Nanotechnology is a leading branch of technology and is expected to improve national industrial competitiveness. For maintaining a sustainable growth in nanotechnology, Korean government has set up specific plans from a long-term perspective. One of these plans is tracking and promoting certain potential technologies called Future 30 Nanotechnologies. This study aims to develop an analysis framework for comprehending the Future 30 Nanotechnologies. We applied this framework to the carbon nanomaterials field. Through co-authorship and keyword network analysis, we identified the research trends of three countries (i.e., Korea, US, and China.). This research framework could be utilized in the development of a nanotechnology policy.

탄소 나노튜브의 볼밀링 시 구조 변화 (Structural Modification of Carbon Nanotubes during Ball-milling)

  • 남혜림;안중호
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.258-263
    • /
    • 2013
  • We examined various ball-milling parameters which affect the structural and morphological modification of multi-wall carbon nanotubes. In particular, the effect of milling mode and the use of different milling agents were examined. Friction milling mode induced more structural changes than impact milling mode except the use of dry ice as a milling agent. Wet milling was helpful for reducing more effectively the agglomeration of nanotubes than dry milling. The use of hard solid particles such as silica and alumina as milling agents resulted in an effective shortening of nanotubes, but often susceptible to the amorphization and the destruction of crystallinity.

Simultaneous growth of graphene and vertically aligned single-walled carbon nanotubes at low temperature by chemical vapor deposition

  • Hong, Suck Won;Kim, Kwang Ho;Jung, Hyun Kyung;Kim, Daesuk;Lee, Hyung Woo
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.154-157
    • /
    • 2012
  • We present the simultaneous growth of single-walled carbon nanotubes and graphene with the optimal conditions of the synthesizing parameters. The dense and vertically aligned SWNTs having the length of over 100 ㎛ was grown by 2 nm-thick Fe catalytic layer. From 650 ℃, the vertically well-grown SWNTs were obtained by increasing the temperature. The severallayered graphene was synthesized with the gas mixing ratio of 15 : 1(H2 : C2H2) at 650 ℃ and higher temperatures. With these optimal conditions, the vertically well-grown SWNTs and the several-layered graphene were synthesized simultaneously. The presence of SWNTs and the layer of graphene were verified by field emission scanning electron microscopy and high resolution transmission electron microscopy. From the result of this simultaneous synthesizing approach, the possibility of one step growth process of CNTs and grapheme could be verified.

초음파처리를 통한 탄소나노튜브 분산용액 제조 및 시멘트 페이스트의 적용성 평가 (Production of Carbon Nanotube Dispersion Solution Using the Ultrasonic Treatment and Applicability Evaluation on the Cement Paste)

  • 박성환;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.174-175
    • /
    • 2021
  • Currently, the construction structures become larger and more high-performance in modern society, demands for ultra-high strength and light weight construction materials are increasing rapidly. Therefore, this study aims to confirm the applicability of nanomixed cement supplemented with physical and mechanical properties using nanomaterials.Changes in compressive strength and properties were analyzed according to the ratio of cement paste and dispersant (PCE) made by ultrasonication of carbon nanotubes (CNT)

  • PDF

항공기 브레이크 디스크(CFRC)의 피로특성연구 (A Study on Fatigue Characteristics of Aircraft Brake Disk Material (CFRC))

  • 김혜성;김현수;감문갑;김태규
    • 열처리공학회지
    • /
    • 제21권3호
    • /
    • pp.131-136
    • /
    • 2008
  • The fatigue characteristics of the carbon fiber reinforced carbon composites (CFRC) material are necessary for the advanced industries requiring the thermal resistance. The research and development of CFRC have been in progress in the field of aerospace and defense industry. In this paper, we investigated the fatigue characteristics of CFRC by using an aircraft brake disk system. As the results of a series of tensile tests, the tensile strengths of CFRC were appeared 102.8 MPa ($0^{\circ}$), 98.6 MPa ($60^{\circ}$), and 95.5 MPa ($90^{\circ}$), respectively. It was showed that CFRC had better tensile property than the usual composite materials. As the results of fatigue tests, the fatigue limit was ~ 77 MPa, which is under the 75% of the maximum tensile load. CFRC is recommended as a strong potential composite materials because the carbon fibers are closely packed and strongly bonded between the carbon fibers.