• Title/Summary/Keyword: carbon monoxide gas

Search Result 377, Processing Time 0.033 seconds

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

A Study on Prevention of Accidents of Carbon Monoxide Leak from Gas Boilers (가스보일러 일산화탄소 누출사고 경감에 관한 연구)

  • Song, Jaechang;Kwon, Hweeung;Lee, Younghee;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.277-281
    • /
    • 2012
  • This work is concerned with a plan for preventing accidents of CO gas leak from gas boilers, involving the enforcement of installations of both CO alarm system and condensing boilers, and financial support of government grants. If amongst 1,460,000 beneficiaries of basic livelihood security, one million households in use of gas boilers receive 3-year support of 200,000 won, the difference of prices between common and condensing boilers, the government grants would be 2,000 billion won. If 3 million common householders are in 3-year support of 100,000 won, government grants would be 3,000 billion won. Therefore, 3-year grand total of government grants would be 5,000 billion won. Finance for government grants can be purveyed from energy saving; yearly 2,000 billion won of energy saving by enforcing to replace one million existing boilers with condensing boilers, leading to 2 trillion won of energy saving for 10 years. In this way, 6,000 billion won of 3-year grand total of government grants for CO alarm system and condensing boilers can be purveyed. The rest amount would be fundraised for energy savings. We claim that our proposal can make an achievement of more than 50% reduction of CO leak accidents during 10 years.

A Study on Combustion Characteristics in terms of the Type of Fuel Supply Device (Feeder) of a Wood Pellet Boiler (목재펠릿보일러의 연료공급 장치의 형태에 따른 연소특성에 관한 연구)

  • Choi, Yun Sung;Euh, Seung Hee;Oh, Kwang Cheol;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • This study reports the combustion characteristics, such as burner temperature and the concentration of exhausted gas ($O_2$, $CO_x$, $NO_x$) due to the different types and pitches of the fuel supply feeder of the wood pellet boiler. The 1st grade wood pellets composed of mainly larch have been used for the experiment. In case of using the spring feeder, mean temperature of burner was approximately $821.76^{\circ}C$, and the mean concentration of oxygen, carbon monoxide, carbon dioxide and nitrogen oxide were approximately 8.88%, 93.35ppm, 12.15% and 139.83 ppm, respectively. The test result with the spring feeder was shown to approach the condition of complete combustion compared to that of a screw feeder and were in good agreement with authentication judgement standard. Furthermore, the combustion efficiency was improved according to the growth of screw pitch. The control of air flow rate from the blower and ventilator is needed to achieve the complete combustion.

Products and pollutants of half dried sewage sludge and waste plastic co-pyrolysis in a pilot-scale continuous reactor (반 건조 하수슬러지와 폐플라스틱 혼합물의 파일롯 규모 연속식 열분해에 의한 생산물과 발생 오염물질)

  • Kim, YongHwa;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • A continuous low temperature ($510^{\circ}C{\sim}530^{\circ}C$) pyrolysis experiment in a pilot-scale of 85.3 kg/hr was carried out by the mixed feedstock of half dried digested sewage sludge and waste plastics. As a result, the amount of pyrolysis gas generated was maximum 68.3% of input dry mass and scored $40.9MJ/Nm^3$ of lower heating value (LHV), and the percentage of air inflow caused by continuous pyrolysis was 19.6%. The oil was produced 4.2% of the input dry mass, and the LHV was 32.5 MJ/kg. The sulfur and chlorine contents, which could cause corrosion of the facility, were found to be 0.2% or more respectively. The carbide generated was 27.5% of the input dry mass which shows LHV of 10.2 MJ/kg, and did not fall under designated waste from the elution test. The concentration of carbon monoxide, sulfur oxides and hydrogen cyanide of emitted flu gas from pyrolysis gas combustion was especially high, and dioxin (PCDDs/DFs) was within the legal standards as $0.034ng-TEQ/Sm^3$. Among the 47 water pollutant contents of waste water generated from dry flue gas condensation, several contents such as total nitrogen, n-H extract and cyanide showed high concentration. Therefore, the merge treatment in the sewage treatment plants after pre-treatment could be considered.

Preparation and characterization of Environmental Functional Nanofibers by electrospun nanofibers-Dry sorption material for indoor CO2 capture (정전방사를 통한 환경기능성 미세섬유 제조 및 특성분석 - 실내환경 CO2 포집용 건식흡착소재)

  • Kim, Eun Joo;Park, Kyung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.938-943
    • /
    • 2018
  • Thin nano-sized fibres were prepared by an electrospinning method. The spinning appratus consisted of pump for polymer injection, nozzle and nozzle rotus, and an aluminum plate collected the polymer fibers. Its surface was chemically modified for selective improved adsorption of carbon monoxide at indoor level. The chemical activation enabled to form the fibres 250-350 nm in thickness with pore sizes distributed between 0.6 and 0.7 nm and an average specific surface area of $569m^2/g$. The adsorption capacities of pure (100%) and indoor (0.3%) $CO_2$, of which level frequently appears, at the ambient condition were improved from 1.08 and 0.013 to 2.2 and 0.144 mmol/g, respectively. It was found that the adsorption amount of $CO_2$ adsorbed by the chemically activated carbon nanofiber prepared through chemical activation would vary depending on the ratio of specific surface area and micropores. In particular, chemical interaction between adsorbent surface and gas molecules could enhance the selective capture of weak acidic $CO_2$.

Study on Torrefaction Characteristics of Baggase (사탕수수 부산물의 반탄화 특성에 관한 연구)

  • Jeeban, Poudel;Kim, Won-Tae;Ohm, Tae-In;Oh, Sea Cheon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.672-677
    • /
    • 2014
  • Torrefaction is a thermal treatment process to pre-treat biomass at temperature of $200{\sim}300^{\circ}C$ under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass. In this work, the torrefaction characteristics of baggase has been studied. This study focuses on the relation between the energy yields, heating values, gas emission, volatile and ash constituents with torrefaction temperatures and times. The activation energies of baggase torrefaction has been studied by using TGA (Thermogravimetric Analyzer). From this work, it was seen that ash constituents and heating values were increased with torrefaction temperature, while volatile constituents and energy yields decreased. It was also found that carbon monoxide containing oxygen were decomposed at a lower temperature than those of hydrocarbon compounds, $C_xH_y$.

Experiments on a Regenerator with Thermosyphon for Absorption Heat Pumps (기포 펌프를 적용한 흡수식 열펌프용 고온 재생기의 작동 특성 실험)

  • Park, C.W.;Jurng, J.;Nam, P.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.463-472
    • /
    • 1996
  • Experiments were carried out to study the operation characteristics of a regenerator with a thermo-syphon pump and a surface-flame burner for a lithium bromide (LiBr)-water absorption heat pump. A cylindrical-shape metal-fiber burner and commercial grade propane were used. The emission of carbon monoxide and nitric oxide was measured by a combustion gas analyzer. Ther regeneration rate of water vapor as a refrigerant was measured. It could be as a reference value showing the performance of the regenerator. The circulation rate of the LiBr-water solution was also measured from both the tanks for the weak-and the strong-solution. Using a refractometer, the LiBr concetration in the solution was calculated from the measured refractory index of the solution. Temperature of the solution and the condensed water was recorded at several points in the experimental apparatus with thermocouples, using a personal computer. This data collecting system for measuring temperature was calibrated with a set of standard thermometers. The generating rate of water vapor as refrigerant increased linearly with heat supplied. It was about 4.0g/s with the heat supplied at a rate of 16,500kcal/h. The circulation rate of LiBr solution also increases with the heat supplied. The difference in LiBr concentrations between the weak and the strong solution was in the range of 1 to 5% when the concentration of the strong solution was about 60%. It was dependent upon both the heat supplied and the circulation rate of the solution. The initial concentration and the level of the LiBr solution in the regenerator were measured and recorded before experiments. The effect of them on the generating rate of water vapor and the circulation rate of the solution was also studied. The generating rate of water vapor was not strongly dependent upon both the level of the LiBr solution and the initial LiBr concentration. However, the concentration difference of the solution increases with the initial level of the LiBr solution.

  • PDF

Characteristics of Hazardous Substances Generated from Combustible Compressed Wood Used during Live Fire Training for Firefighters (소방 실화재 훈련에서 사용하는 압축목재 가연물에서 발생하는 유해물질 특성)

  • Lee, Yongho;Kim, Jinhee;Kim, Uijin;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu;Lee, So Yun;Ham, Seunghon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.555-564
    • /
    • 2020
  • Objectives: To identify and investigate through qualitative and quantitative analysis the hazardous substances generated when compressed wood was burned at a live fire-training center. Methods: Four types of compressed wood that are actually used in live fire training were burned in a chamber according to KS F2271. The gaseous material was sampled with a gas detector tube and conventional personal samplers. Results: 1,3-butadiene, benzene, toluene, xylene, formaldehyde, hydrogen chloride, hydrogen cyanide, ammonia, carbon monoxide, and nitric acid were detected. In particular, 1,3-butadiene (497.04-680.44 ppm), benzene (97.79-125.02 ppm), formaldehyde (1.72-13.03 ppm), hydrogen chloride (4.71-15.66 ppm), hydrogen cyanide (3.64-8.57 ppm), and sulfuric acid (3.85-5.01 ppm) exceeded the Korean Occupational Exposure Limit as measured by sampling pump according to the type of compressed wood. Conclusions: We found through the chamber testing that firefighters could be exposed to toxic substances during live fire training. Therefore, firefighter protection is needed and more research is required in the field.

A Study on Biodiesel Fuel of Engine Performance and Emission Characteristics in Diesel Engine (디젤엔진 성능에 미치는 바이오디젤 연료에 관한 연구)

  • Chen, Lei;Cheng, Yukun;Kim, Jaeduk;Song, Kyukeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.59-65
    • /
    • 2014
  • Diesel engines have the superior combustion efficiency and fuel economy that they are widely used for industry, heavyduty vehicles, etc. However, its exhaust emissions have become the major concerns due to their environmental impacts. Moreover, the depletion of fossil fuels is the main issue. Therefore, it is important to look for alternative sources of energy. Bio-diesel is one of the ideal energy which has proved to be ecofriendly for more than fossil fuels. The experimental tests analysed the engine performance and emission characteristics of a diesel engine using diesel and biodiesel blended of BD25, BD45 and BD65, in order to study the use of clean fuel to meet the increasingly stringent emission regulations. The engine performance was examined by using engine dynamometer while an exhaust gas analyzer was used to examine the emission characteristics. The effect of biodiesel on engine performance were lower to diesel through comparing their HP and torque but fuel consumption was slightly increased because of biodiesel has lower heating value and higher density than diesel. However, due to the better lubricity, the brake thermal efficiency of biodiesel was higher than diesel. The emission characteristics were strongly affected by the blending ratio of diesel and biodiesel. The results showed that the smoke opacity, hydrocarbons (HC) and carbon monoxide (CO) emissions decreased while the nitrogen oxides (NOX) slightly increased.

Evaluation of Cigarette Quality by Measurement of Oxygen Free Radicals in Smoke (담배 연기 중 산소 자유 라디칼 측정에 의한 품질 평가)

  • Ji-Chang Park;Kyung-Ran Yoon;Young-Ha Rhee;Cheong Ho Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.1
    • /
    • pp.19-27
    • /
    • 1990
  • To evaluate tobacco quality, several mathods including sensory test, or measurement of some toxic compounds such as tar, nicotine and carbon monoxide in cigarette smoke have been used. However, many detrimental effects of smoking on the physiological functions including respiratory system reported were turned out to be the action of reactive oxygen species. Therefore, the amounts of oxygen free radicals such as superoxide, hydroxyl radical, even hydrogen peroxide in the cigarette smoke are thought the very important factors. In the present study, we have determined the generation of superoxide and the content of hydrogen peroxide using superoxide dismutase and catalase in the gas and particulate phases obtained from cigarette smoke, respectively. In the aqueous extracts of total particulate materials, suproxide and hydrogen peroxide were detected, and there was an excellent correlation between oxygen tint of oxygen free radicals in cigarette smoke may be a useful index for evaluation of cigarette quality in the aspect of smoking and health.

  • PDF