• Title/Summary/Keyword: carbon mitigation

Search Result 202, Processing Time 0.027 seconds

Barriers to Realization of Forestry Mitigation Potential in India

  • Murthy, Indu K;Prasad KV, Devi
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.5
    • /
    • pp.405-411
    • /
    • 2018
  • Implementation of mitigation options on land is important for realisation of the goals of the Paris Agreement to stabilize temperature at $2^{\circ}C$. In India, the Intended Nationally Determined Contribution (INDC) targets include a forestry goal of creation of carbon sinks of 2.5 to 3 billion tonnes by 2030. There are however, multiple barriers to implementation of forestry mitigation options in India. They include environmental, social, financial, technological and institutional barriers. The barriers are varied not just across land categories but also for a land category depending on its regional location and distribution. In addition to these barriers is the impeding climate change that places at risk realisation of the mitigation potential as rising temperatures, drought, and fires associated with projected climate change may lead to forests becoming a weaker sink or a net carbon source before the end of the century.

Assessing Organic Matter and Organic Carbon Contents in Soils of Created Mitigation Wetlands in Virginia

  • Ahn, Changwoo;Jones, Stacy
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • Several soil properties were studied from three young created mitigation wetlands (<10 years old), which were hydrologically comparable in the Piedmont region of Virginia. The properties included soil organic matter (SOM), soil organic carbon (SOC), pH, gravimetric soil moisture, and bulk density ($D_b$). No significant differences were found in the soil properties between the wetlands, except SOM and SOC. SOM and SOC indicated a slight increase with wetland age; the increase was more evident with SOC. Only about a half of SOC variability found in the wetlands was explained by SOM ($R^2$ = 0.499, p < 0.05). The majority of the ratios of SOM to SOC for these silt-loam soils ranged from 2.0 to 3.5, which was higher than the 1.724 Van Bemmelen factor, commonly applied for the conversion of SOM into SOC in estimating the carbon storage or accumulation capacity of wetlands. The results may caution the use of the conversion factor, which may lead to an overestimation of carbon sequestration potentials of newly created wetlands. SOC, but not SOM, was also correlated to $D_b$, which indicates soil compaction typical of most created wetlands that might limit vegetation growth and biomass production, eventually affecting carbon accumulation in the created wetlands.

Cluster analysis of city-level carbon mitigation in South Korea

  • Zhuo Li
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.189-198
    • /
    • 2023
  • The phenomenon of climate change is deteriorating which increased heatwaves, typhoons and heavy snowfalls in recent years. Followed by the 25th United nations framework convention on climate change(COP25), the world countries have achieved a consensus on achieving carbon neutrality. City plays a crucial role in achieving carbon mitigation as well as economic development. Considering economic and environmental factors, we selected 63 cities in South Korea to analyze carbon emission situation by Elbow method and K-means clustering algorithm. The results reflected that cities in South Korea can be categorized into 6 clusters, which are technology-intensive cities, light-manufacturing intensive cities, central-innovation intensive cities, heavy-manufacturing intensive cities, service-intensive cities, rural and household-intensive cities. Specific suggestions are provided to improve city-level carbon mitigation development.

Relationship between Tree Species Diversity and Carbon Stock Density in Moist Deciduous Forest of Western Himalayas, India

  • Shahid, Mohommad;Joshi, Shambhu Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • With the growing global concern about climate change, relationship between carbon stock density and tree species has become important for international climate change mitigation programmes. In this study, 150 Quadrats were laid down to assess the diversity, biomass and carbon stocks in each of the forest ranges (Barkot Range, Lachchiwala Range and Thano Range) of Dehra Dun Forest Division in Doon Valley, Western Himalaya, India. Community level carbon stock density was analyzed using Two Way Indicator Species Analysis. Species Richness and Shannon Weiner index was correlated with the carbon stocks of Doon Valley. Positive and weak relationship was found between the carbon stock density and Shannon Weiner Index, and between carbon stock density and Species Richness.

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

Towards Sustainability of Tropical Forests: Implications for Enhanced Carbon Stock and Climate Change Mitigation

  • Rahman, Mizanur;Islam, Mahmuda;Islam, Rofiqul;Sobuj, Norul Alam
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.281-294
    • /
    • 2017
  • Tropical forests constitute almost half of the global forest cover, account for 35% of the global net primary productivity and thereby have potential to contribute substantially to sequester atmospheric $CO_2$ and offset climate change impact. However, deforestation and degradation lead by unsustainable management of tropical forests contribute to the unprecedented species losses and limit ecosystem services including carbon sequestration. Sustainable forest management (SFM) in the tropics may tackle and rectify such deleterious impacts of anthropogenic disturbances and climatic changes. However, the existing dilemma on the definition of SFM and lack of understanding of how tropical forest sustainability can be achieved lead to increasing debate on whether climate change mitigation initiatives would be successful. We reviewed the available literature with a view to clarify the concept of sustainability and provide with a framework towards the sustainability of tropical forests for enhanced carbon stock and climate change mitigation. We argue that along with securing forest tenure and thereby reducing deforestation, application of reduced impact logging (RIL) and appropriate silvicultural system can enhance tropical forest carbon stock and help mitigate climate change.

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.