• Title/Summary/Keyword: carbon isotope

Search Result 211, Processing Time 0.034 seconds

Stable Carbon Isotope Signature of Dissolved Inorganic Carbon (DIC) in Two Streams with Contrasting Watershed Environments: A Potential Indicator for Assessing Stream Ecosystem Health

  • Kim, Chulgoo;Choi, Jong-Yun;Choi, Byungwoong;Lee, JunSeok;Jeon, Yonglak;Yi, Taewoo
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.259-273
    • /
    • 2021
  • We conducted a study to investigate the characteristics of the carbon cycle of two streams (located in Shig a Prefecture, Japan), having similar size, namely, the Adokawa stream (length: 52 km, area: 305 km2, watershed population: 8,000) and the Yasukawa stream (length: 62 km, area: 380 km2, watershed population: 120,000), but with different degree of human activity. Samples were collected from these two streams at 14 (Adokawa stream) and 23 (Yasukawa stream) stations in the flowing direction. The dissolved inorganic carbon (DIC) concentration and the stable carbon isotope ratio of DIC (δ13C-DIC) were measured in addition to the watershed features and the chemical variables of the stream water. The δ13C-DIC (-9.50 ± 2.54‰), DIC concentration (249 ± 76 µM), and electric conductivity (52 ± 13 µS/cm) in Adokawa stream showed small variations from upstream to downstream. However, the δ13C-DIC (-8.68 ± 2.3‰) upstream of Yasukawa stream was similar to that of Adokawa stream and decreased downstream (-12.13 ± 0.43‰). DIC concentration (upstream: 272 ± 89 µM, downstream: 690 ± 37 µM) and electric conductivity (upstream: 69 ± 17 µS/cm, downstream: 193 ± 37 µS/cm) were higher downstream than upstream of Yasukawa stream. The DIC concentration of Yasukawa stream was significantly correlated with watershed environmental variables, such as, watershed population density (r = 0.8581, p<0.0001, n = 23), and forest area percentage of the watershed (r = -0.9188, p<0.0001, n = 23). δ13C-DIC showed significant negative correlation with the DIC concentration (r = -0.7734, p<0.0001, n = 23), electric conductivity (r = -0.5396, p = 0.0079, n = 23), and watershed population density (r = -0.6836, p = 0.0003, n = 23). Our approach using a stable carbon isotope ratio suggests that DIC concentration and δ13C-DIC could be used as indicators for monitoring the health of stream ecosystems with different watershed characteristics.

Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type

  • Chung, Ill-Min;Lee, Taek-Jun;Oh, Yong-Taek;Ghimire, Bimal Kumar;Jang, In-Bae;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.195-200
    • /
    • 2017
  • Background: The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. Methods: C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. Results: The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The ${\delta}^{15}N_{AIR}$ and ${\delta}^{34}S_{VCDT}$ values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the ${\delta}^{13}C_{VPDB}$ value. The combination of ${\delta}^{13}C_{VPDB}$, ${\delta}^{15}N_{AIR}$, or ${\delta}^{34}S_{VCDT}$ in ginseng, except the combination ${\delta}^{13}C_{VPDB}-^{34}S_{VCDT}$, showed a better discrimination depending on soil type or fertilizer type. Conclusion: This case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.

Little Ice Age recorded in the YC-2 stalagmite of the Yongcheon Cave, Jeju Island (South Korea) (제주도 용천동굴 석순(YC-2)에 기록되어 있는 한반도의 소빙하기)

  • Ji, Hyo Seon;Woo, Kyung Sik;Yang, Dong Yoon
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.261-271
    • /
    • 2010
  • Carbon isotopic compositions of the YC-2 stalagmite in Yongcheon Cave were analyzed to delineate paleoclimatic variations near Korean peninsula for the past historical period. The YC-2 stalagmite is about 68 mm long and annual growth laminae are distinctively identified. Because the number of growth laminae is at least 242, the stalagmite can be estimated to be at least 241 years old. At about 15 mm from the bottom, one thick brown growth lamina is observed, and this lamina was likely to have been formed when the stalagmite ceased to grow, making the hiatus. High resolution, carbon isotope data indicate past fluctuations of East Asia monsoonal intensity (intimately related to the amount of precipitation). Based on the carbon isotope trend, the stalagmite can be divided into three stages (Stages I, II and III). The highest carbon isotopic compositions of Stage I (${\delta}^{13}C$=-3.3~0.4‰, PDB) indicate that the stalagmite grew during the Little Ice Age when cold and dry climate prevailed with less vegetation. Stage II is characterized by a transitional period from cold and dry to warm and wet climate with a increasing trend of carbon isotopic compositions (${\delta}^{13}C$=-9.6~-0.6‰) and this period indicates the weakening of the Little Ice Age climate. This decreasing trend also suggests that Little Ice Age was terminated near middle 1870's around Korean peninsula. Relatively low carbon isotopic compositions during Stage III (${\delta}^{13}C$=-11.0~-8.0‰) indicates that the climate was changed to warm and wet conditions which are similar to the present.

Assignment of the Carbonyl Carbon Resonances in Anti-Dansyl Antibodies (항 단실 항체의 카르보닐탄소 유래 시그날의 귀속)

  • ;;Koichi Kato;Yoji Arata
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.516-520
    • /
    • 1995
  • The anti-dansyl antibodies were specifically labeled with stable isotope by growing hybridoma cells in serum-free medium. Assignments of the observed carbonyl carbon resonances have been determined by using $^{13}C-{15}N$ double labeling method in order to assign the Leu resonances. However, when the identical dipeptide appears more than twice in the polypeptide sequences, we applied the proteolytic fragments in the fragment-specific method. Carboxypep-tidase B-treated antibody has also been used to assign the Lys-447 in C terminal amino acid. These unambiguously assigned carbonyl carbon resonances in antibodies are thought to be useful in elucidating not only the structure of antibodies but also the structure-function relationship in the antibody by $^{13}C$ neuclear magnetic resonance spectroscopy.

  • PDF

Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$) (탄소 및 질소 안정동위원소 비를 이용한 영산강하구역 유기물 기원 추정 연구)

  • Lee, Yeon-Jung;Jeong, Byung-Kwan;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • Organic carbon and total nitrogen stable isotope ratios of suspended materials were determined at 3 stations (from Mongtan Bridge to Youngsan river estuary barrage) (n=6, each) from November 2008 to August 2009, in order to understand the origin of particulate organic matter at the Estuary of Youngsan River. Allochthonous organic matter, ammonia-N and silicate were increased after heavy rain (in August). Carbon isotope ratios were significantly different between stations in November and August, and it was possible to determine the origin of organic matter. The heavier nitrogen isotope ratios, as well as higher phosphate concentrations, were found in November than other sampling times. Livestock wastewater and farmland input was likely the main causes of these high values. In addition, YS3 station, the nearest site to estuary barrage, appears to be affected by a substantial amount of livestock wastewater and farmland input, considering that nitrogen isotope ratios were heavier than those at the upper sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the determination of organic matter origin in aquatic environments.

Relative Quantification of Glycans by Metabolic Isotope Labeling with Isotope Glucose in Aspergillus niger

  • Choi, Soo-Hyun;Cho, Ye-Eun;Kim, Do-Hyun;Kim, Jin-il;Yun, Jihee;Jo, Jae-Yoon;Lim, Jae-Min
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.139-145
    • /
    • 2022
  • Protein glycosylation is a common post-translational modification by non-template-based biosynthesis. In fungal biotechnology, which has great applications in pharmaceuticals and industries, the importance of research on fungal glycoproteins and glycans is accelerating. In particular, the importance of quantitative analysis of fungal glycans is emerging in research on the production of filamentous fungal proteins by genetic modification. Reliable mass spectrometry-based techniques for quantitative glycomics have evolved into chemical, enzymatic, and metabolic stable isotope labeling methods. In this study, we intend to expand quantitative glycomics by metabolic isotope labeling of glycans in Aspergillus niger, a filamentous fungus model, by the MILPIG method. We demonstrate that incubation of filamentous fungi in a culture medium with carbon-13 labeled glucose (1-13C1) efficiently incorporates carbon-13 into N-linked glycans. In addition, for quantitative validation of this method, light and heavy glycans are mixed 1:1 to show the performance of quantitative analysis of various N-linked glycans simultaneously. We have successfully quantified fungal glycans by MILPIG and expect it to be widely applicable to glycan expression levels under various biological conditions in fungi.

Stable Isotope Profiles of the Fossil Mollusks from Marginal Marine Environment: Is Carbon from the Seasonal Methanogenesis?

  • Khim, Boo-Keun;Bock, Kathy-W.;Krantz, David-E.
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.63-68
    • /
    • 1997
  • Stable isotope profiles with fine-scale resolution were constructed from the fossil mollusk shells, Mercernaria mercernaria, obtained from the late Pleistocene transgressive deposits of Gomez Pit, Virginia, USA. Incremental sampling were made along the axis of maximum growth to provide high-resolution ${\delta}^{18}$O and ${\delta}^{13}$C records. The ${\delta}^{18}$O shell profiles exhibit a series of pronounced cycles in the overall amplitude, corresponding to strong seasonal variations in temperature, which is apparently positive environmental variable. Contrasts between the patterns of ${\delta}^{18}$O and ${\delta}^{13}$C profiles reflect the relationship influencing the seasonal carbon cycling in the shallow marine environment. Positive anomalies of the ${\delta}^{13}$C values during the summer were observed to be out of phase with the ${\delta}^{18}$O profile. Such relatively heavier carbon source may be alternated due to seasonal methanogenesis during the summer. A hypothesized methane-based system may be operated in the shallow and marginal marine environment, resulting in a ${\delta}^{13}$C enriched bicarbonate pool, in which the heavier isotope seems to be incorporated to the shell carbonate.

  • PDF

Environmental Isotope Characteristics of $CO_2$-rich Water in the Kangwon Province (강원도지역 탄산수의 환경동위원소적 특성)

  • 최현수;고용권;김천수;배대석;윤성택
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.491-504
    • /
    • 2000
  • Environmental isotope $^{18}O$, $^{2}H$, $^{3}H$,$^{13}C$, $^{34}S$and $^{87}Sr/^{86}Sr$) studies on ${CO_2}$-rich waters in the Kangwon Province were carried out to elucidate the origin, residence time, water-rock interaction and mixing process of their. ${\delta}^{18}O$ and ${\delta}D$ data indicate that ${CO_2}$-rich waters were derived from the local meteoric water. It also shows that each type of ${CO_2}$-rich water has distinct isotopic composition and Na-${HCO_3}$ type water (-10.8 to -12.1${\textperthousand}$, ${\delta}^{18}O$ ) is lighter than other type waters. These depleted isotopic values supposedly indicate that, considering the altitude effect of isotope in Korea, the recharge area of Na-${HCO_3}$ type water can be estimated to be relatively higher in elevation than those of Ca-${HCO_3}$ and Ca-Na-${HCO_3}$ type waters. Tritium contents close to zero are observed in the Na-${HCO_3}$ type water, confirming a long residence time and the possibility of a ${CO_2}$ inflow into the aquifer at great depth. These isotope data also show that the Ca-${HCO_3}$ type water has undergone mixing process with surface water during ascending at depth, whereas Na-${HCO_3}$ type water was less mixed with surface waters. The carbon isotope data (-8.8 to +0.8 ${\textperthousand}$ ${\delta}^{13}C$) indicate that dissolved carbon in the ${CO_2}$-rich waters was possibly derived from deep seated ${CO_2}$ gas. The high ${\delta}^{34}S$ values (up to 38.1${\textperthousand}$) of dissolved sulfates suggest that sulfate reduction by microbial activity had occurred at depth. Strontium isotopic data ($^{87}Sr/^{86}Sr$) of ${CO_2}$-rich waters indicate that the chemistry of the ${CO_2}$-rich waters is determined by water-rock (granite) interaction.

  • PDF

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.