• Title/Summary/Keyword: carbon flow distribution

Search Result 110, Processing Time 0.023 seconds

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

  • Zeng, L.;Zhang, G.A.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.

Effects of the Gas Flow Inside a CVI Reactor on the Densification of a C/C Composite (화학기상침투법 반응로 내부 유동에 따른 탄소/탄소 복합재 밀도화)

  • Kim, Hye-gyu;Ji, Wooseok;Kwon, Hyang Joo;Yoon, Sungtae;Kim, Jung-il
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.249-256
    • /
    • 2021
  • In this paper, the densification of a carbon/carbon composite during a chemical vapor infiltration (CVI) process is studied using a chemo-mechanical model. The multi-physics numerical model, developed in the previous research, couples computational fluid dynamics and major chemical reactions in the reactor. The model is especially utilized to study the effect of flow behavior around the preform on the densification. Four different types of "flow-guide" structures are placed to alter the gas flow around the preform. It is shown that the flow pattern and speed around the preform can be controlled by the guide structures. The process simulations demonstrate that the average density and/or density distribution of the preform can be improved by controlling the gas flow around the perform. In this study, a full industrial-scale reactor and process parameter were used.

Flow Analysis of Dry-Type Hollowed Adsorption Tower for Treatment of Deodorization (악취처리를 위한 건식 중공 흡착탑에 대한 유동해석)

  • Cho, En-man;Jeong, Won-hoon;Kim, Bong-hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.64-70
    • /
    • 2022
  • The aim of this study is to improve the purification efficiency of odor gas by increasing the contact area between an odor gas and adsorbent. To analyze the flow in the adsorption tower, the flow characteristics in the hollow activated carbon-adsorption tower are identified by applying the loss model, which is a porous flow analysis model. The flow characteristics are investigated for pressure loss, velocity distribution, turbulent kinetic energy, and residence time distribution. The results show that the hollow adsorption tower performs better than the solid adsorption tower in terms of pressure loss and performance. The inner diameter of the hollow region inside the adsorption tower is 0.64 m (Di/Do = 0.37). Furthermore, the adsorbent performance is unaffected even when adsorbent stages are installed to replace the adsorbent.

Comparative Evaluation for Seasonal CO2 Flows Tracked by GOSAT in Northeast Asia (GOSAT으로 추적된 동북아시아 이산화탄소 유동방향의 계절별 비교평가)

  • Choi, Jin Ho;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.1-13
    • /
    • 2012
  • This study intends to evaluate the seasonal flow direction of carbon dioxide in Northeast Asia by using GOSAT, the first Greenhouse Observing SATellite, in an attempt to overcome costly, laborious and time consuming ground observation which has been frequently pointed out in existing studies. For this purpose, missing values were supplemented by applying the Kriging interpolation and the overall flow direction of carbon dioxide was determined through anisotoropy semi-variogram. As a result, it was found that the overall spatial distribution of carbon dioxide in Northeast Asia varies depending on the latitude, and that carbon dioxide mainly flows southeast or east in spring, autumn and winter, but northeast or north in summer. Similar to the flow of monsoons in Northeast Asia, these results show that carbon dioxide flows mainly from the west to the east, which proves that carbon dioxide discharged from China is influencing even the Korean Peninsula and Japan. However, as the flow of carbon dioxide varies depending on a variety of factors such as artificial sources, plant respiration, and the absorption and discharge of the ocean, follow-up studies are requested to evaluate such variables and the correlations.

Fluid flow dynamics in deformed carbon nanotubes with unaffected cross section

  • Rezaee, Mohammad;Yeganegi, Arian;Namvarpour, Mohammad;Ghassemi, Hojat
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.253-261
    • /
    • 2022
  • Numerical modelling of an integrated Carbon NanoTube (CNT) membrane is only achievable if probable deformations and realistic alterations from a perfect CNT membrane are taken into account. Considering the possible forms of CNTs, bending is one of the most probable deformations in these high aspect ratio nanostructures. Hence, investigation of effect associated with bent CNTs are of great interest. In the present study, molecular dynamics simulation is utilized to investigate fluid flow dynamics in deformed CNT membranes, specifically when the tube cross section is not affected. Bending in armchair (5,5) CNT was simulated using Tersoff potential, prior to flow rate investigation. Also, to study effect of inclined entry of the CNT to the membrane wall, argon flow through generated inclined CNT membranes is examined. The results show significant variation in both cases, which can be interpreted as counter-intuitive, since the cross section of the CNT was not deformed in either case. The distribution of fluid-fluid and fluid-wall interaction potential is investigated to explain the anomalous behavior of the flow rate versus bending angle.

Fabrication of Activated Carbon Fibers from Polyacrylonitrile-Derived Carbon Fibers: Investigating CO2 Adsorption Capability in Relation to Surface Area

  • Seung Geon Kim;Sujin Lee;Inchan Yang;Doo-Won Kim;Dalsu Choi
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.402-407
    • /
    • 2023
  • Activated carbon fibers (ACFs) are fibrous form of activated carbon (AC) with higher mechanical strength and flexibility, which make them suitable for building modules for applications including directional gas flow such as air and gas purification. Similarly, ACFs are anticipated to excel in the efficient capture of CO2. However, due to the difficulties in fabricating monofilament carbon fibers at a laboratory scale, most of the studies regarding ACFs for CO2 capture have relied on electrospun carbon fibers. In this study, we fabricated monofilament carbon fibers from PAN-based monofilament precursors by stabilization and carbonization. Then, ACFs were successfully prepared by chemical activation using KOH. Different weight ratios ranging from 1:1 to 1:4 were employed in the fabrication of ACFs, and the samples were designated as ACF-1 to ACF-4, respectively. As a function of KOH ratio, increase in surface area could be observed. However, the CO2 adsorption trend did not follow the surface area trend, and the ACF-3 with second largest surface area exhibited the highest CO2 adsorption capacity. To understand the phenomena, nitrogen content and ultramicropore distribution, which are important factors determining CO2 adsorption capacity, were considered. As a result, while nitrogen content could not explain the phenomena, ultramicropore distribution could provide a reasoning that the excessive etching led ACF-4 to develop micropore structure with a broader distribution, resulting in high surface area yet deteriorated CO2 adsorption.

Influence of coal and air flow rate distribution on gasification characteristics in 200 t/d scale MHI coal gasifier (200 t/d급 MHI 석탄 가스화기의 석탄 및 공기 배분에 따른 가스화 특성 평가)

  • Doh, Yunyoung;Ye, Insoo;Kim, Bongkeun;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.93-96
    • /
    • 2015
  • Commercial coal gasifiers typically use entrained flow type reactors, but have unique features in terms of reactor shape, gasifying agent, coal feeding type, ash/slag discharge, and reaction stages. The MHI gasifier is characterized as air-blow dry-feed entrained reactor, which incorporates a short combustion stage at the bottom and a tall gasification stage above. This study investigates the flow and reaction characteristics inside a MHI gasifier by using computational fluid dynamics (CFD) in order to understand its design and operation features. For its pilot-scale system at 200 ton/day capacity, the distribution of coal and air supply between the two reaction stages was varied. It was found that the syngas composition and carbon conversion rate were not significantly influenced by the changes in the distribution of coal and air supply. However, the temperature, velocity and flow pattern changed sensitively to the changes in the distribution of coal and air supply. The results suggest that one key factor to determine the operational ranges of coal and air supply would be the temperature and flow pattern along the narrower wall between the two reaction stages.

  • PDF

Reliability Measurements and Thermal Stabilities of W-C-N Thin Films Using Nanoindenter (Nanoindenter를 이용한 W-C-N 박막의 신뢰도 측정과 열적 안정성 연구)

  • Kim, Joo-Young;Oh, Hwan-Won;Kim, Soo-In;Choi, Sung-Ho;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.200-204
    • /
    • 2011
  • In this paper, we deposited the tungsten carbon nitride (W-C-N; nitrogen gas flow of 2 sccm) and tungsten carbon (W-C) thin film on silicon substrate using rf magnetron sputter. Then the thin films annealed at $800^{\circ}C$ during 30 minute ($N_2$ gas ambient) for thermal damage. Nano-indenter was executed 16 points on thin film surface to measure the thermal stability, and we also propose the elastic modulus and the Weibull distribution, respectively. This nanotribology method provides statistically reliable information. From these results, the W-C-N thin film included nitrogen gas flow is more stable for film uniformities, physical properties and crystallinities than that of not included nitrogen gas flow.

Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1

  • Jo, Ji-Hye;Lee, Dae-Sung;Kim, Jun-Hoon;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.291-298
    • /
    • 2009
  • The carbon metabolism of newly isolated Clostridium tyrobutyricum JM1 was investigated at varying initial glucose concentrations (27.8-333.6mM). Because an understanding of metabolic regulations was required to provide guidance for further effective metabolic design or optimization, in this case, maximizing hydrogen production, carbon and energy balances by C. tyrobutyricum JM1 were determined and applied in anaerobic glucose metabolism. The overall carbon distribution suggested that initial glucose concentrations had strong influence on the stoichiometric coefficients of products and the molar production of ATP on the formation of biomass. C. tyrobutyricum JM1 had a high capacity for hydrogen production at the initial glucose concentration of 222.4 mM with high concentrations of acetate and butyrate.