• Title/Summary/Keyword: carbon fiber reinforced plastics

Search Result 193, Processing Time 0.035 seconds

High-Hardness Cemented Carbide With Nickel-Tungsten Alloy Binder (니켈-텅스텐 합금 결합상 적용 고경도 초경합금)

  • Hanjung Kwon
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.318-323
    • /
    • 2024
  • Cemented carbide for cutting tools, which is composed of carbide as a hard phase and metallic component as a metallic phase, mainly uses cobalt as the metallic phase due to the excellent mechanical properties of cobalt. However, as the demand for machining difficult-to-machine materials such as titanium and carbon fiber-reinforced plastics has recently increased, the development of high-hardness cemented carbide is necessary and the replacement of cobalt metal with a high-hardness alloy is required. In this study, we would like to introduce high-hardness cemented carbide fabricated using nickel-tungsten alloy as the metallic phase. First, nickel-tungsten alloy powder of the composition for formation of intermetallic compound confirmed through thermodynamic calculations was synthesized, and cemented carbide was prepared through the sintering process of tungsten carbide and the synthesized alloy powder. Through evaluating the mechanical properties of high-hardness cemented carbide with the nickel-tungsten alloy binder, the possibility of producing high-hardness cemented carbide by using the alloys with high-hardness was confirmed.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

A Study on the Impact Fracture Behavior of Carbon Fiber Reinforced Plastics (CFRP 복합재료의 충격파괴거동에 관한 연구)

  • 고성위;김학돌;엄윤성;최영근;김형진;김재동;김엄기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.300-306
    • /
    • 2002
  • In this paper the failure mechanisms and Charpy impact tests of carbon fiber polypropylene composites have been studied in the temperature range -5$0^{\circ}C$ to 6$0^{\circ}C$ and 3 different supported length of specimen (span length). There are significant effects of temperature and span length on impact fracture toughness, which shows a peak at ambient temperature and decrease as temperature is reduced. Fracture toughness shows a maximum at span length s=20mm. Failure mechanisms are characterized based on SEM examination, which is correlated the measured fracture toughness. Mafor mechansms of this composites can be classified as fiber matrix debonding, delamination, fiber pull-out and matrix deformation.

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Fiber Volume Fraction Measurement of Fiber Reinforced Plastics by Using Gamma-Ray (감마선을 이용한 복합재료의 섬유체적분율 측정)

  • Jang, J.H.;Cho, K.S.;Chang, H.K.;Park, J.H.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.151-155
    • /
    • 1997
  • In this research, nondestructive test using a radioisotope, $^{241}Am$ gamma-ray, was accomplished in order to evaluate the fiber volume fraction of the accumulated composite layers such as glass fiber/epoxy and carbon fiber/epoxy. Attenuation coefficients of the fiber and resin were measured respectively by NaI(T1) detector The fibers volume fraction was measured for various thickness of composite layers between 2 and 20mm. Fiber volume fraction of the composite layers were also measured for various amount of fibers. The experimental errors from nondestructive test using gamma-ray were in the range of ${\pm}1{\sim}2.5%$ in comparison with those from observation by optical microscopy. By selecting the optimum energy and activity of radioisotope, this method can provide a new means for the evaluation of the fiber volume fraction.

  • PDF

Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content (수지함량에 따른 CFRP 적층판의 층간파괴 인성평가)

  • 김지훈;양인영;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Experimental Evaluation of Mechanical Properties for the Carbon/Epoxy Composite Laminates at Low Temperature (탄소섬유/에폭시 복합적층판에 대한 저온에서의 기계적특성 실험평가)

  • Her, N.I.;Sa, J.W.;Cho, S.;Do, C.J.;Oh, Y.K.;Choi, C.H.;Kwon, M.;Lee, G.S.;Lee, S.Y.;Kim, J.H.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.41-44
    • /
    • 2001
  • Mechanical test of the Carbon Fiber Reinforced Plastics (CFRP) composite specimen was performed based on the ASTM code at the ambient and low temperature. Tension, compression in-plane shear, and inter-laminar shear properties of the composite laminates were evaluated experimentally using the Universal Testing Machine(UTM) system at the temperature of $24^{\circ}C$,$-76^{\circ}C$ , and $-196^{\circ}C$. From the test results it was found that the CFRP chosen for the Korea Superconducting Tokamak Advanced Research(KSTAR) magnet supporting post had smaller tensile strength and larger compressive strength at the low temperature than those of the ambient temperature because of material ductility.

  • PDF

The Behavior of Tensile Fracture for Al/CFRP Hybrid Composite Material (Al/CFRP 하이브리드 복합재료의 인장파괴거동)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Ryu, Jin-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The hybrid composite materials are recently used in many field as an advanced material due to their high resistance to fracture. However, hybrid composite materials have several problems, especially delamination, compared with homogeneous materials such as an aluminum alloy, etc. In this study, we carried out the tensile test to study the tension failure appearances and tensile ultimate strength of CFRP/Al/CFRP hybrid composite materials. The CFRP material used in the experiment is a commercial material known as CU175NS in unidirectional carbon prepreg. Also Al/CFRP/Al hybrid composites with three kind length of a single edge crack were investigated for the relationship between an aluminium volume fraction and a crack length. The crack length was measured by a traveling microscope under a universal dynamic tester. Futhermore the stress intensity factor behavior was examined according to a volume fraction and an initial crack length ratio to a width.