• 제목/요약/키워드: carbon fiber reinforced plastic

검색결과 306건 처리시간 0.039초

Bonding Performance of Glulam Reinforced with Textile Type of Glass- and Aramid-Fiber, GFRP and CFRP

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.156-162
    • /
    • 2011
  • To evaluate the bonding performance of reinforced glulam, the textile type of glass fiber and aramid fiber, and the sheet type of glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) were used as reinforcements. The reinforced glulam was manufactured by inserting reinforcement between the outmost and middle lamination of 5ply glulam. The types of adhesives used in this study were polyvinyl acetate resins (MPU500H, and MPU600H), polyurethane resin and resorcinol resin. The block shear strengths of the textile type in glass fiber reinforced glulam using MPU500H and resorcinol resin were higher than 7.1 N/$mm^2$, and these glulams passed the wood failure requirement of Korean standards (KS). In case of the sheet types, GFRP reinforced glulams using MPU500H, polyurethane resin and resorcinol resin, and CFRP reinforced glulams using MPU500H and polyurethane resin passed the requirement of KS. The textile type of glass fiber reinforced glulam using resorcinol resin after water and boiling water soaking passed the delamination requirement of KS. The only GFRP reinforced glulam using MPU500H after water soaking passed the delamination requirement of KS. We conclude that the bonding properties of adhesive according to reinforcements are one of the prime factors to determine the bonding performance of the reinforced glulam.

구조적 손상을 입은 R.C보의 휨보강 효과 (Flexural Strengthening Effect on R.C Beam with Structural Damage)

  • 김성용;한덕전;신창훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.147-156
    • /
    • 2004
  • 최근에 구조적인 손상을 입은 철근콘크리트 구조물은 내구성과 내력 향상을 위해 보수 보강이 필요하게 되었다. 본 연구에서는 철근콘크리트 보가 휨에 의해서 손상되었을 경우 손상이전의 상태로 내력복원을 할 수 있는지를 규명하고자 한다. 실험결과 기준실험체와 강판 탄소섬유시트 격자탄소섬유판으로 보강한 실험체를 비교할 때, 휨내력은 상승하였고, 연성도와 에너지흡수능력도 기준실험체에 비해 큰 차이를 보이지 않아 보강재인 강판 탄소섬유시트 격자탄소섬유판(복합재)은 R.C보의 휨보강재로 매우 우수한 성능을 보유하고 있다고 판단된다.

국부 열손상을 받은 복합재료의 탄성파특성 (Characteristics of Elastics Waves of Fiber-Reinforced Plastic with Localized Heat Damage)

  • 남기우;김영운
    • 한국해양공학회지
    • /
    • 제16권4호
    • /
    • pp.48-53
    • /
    • 2002
  • Fiber-reinforced composites are extensively used in electronic, ship and aerospace applications due to their high strength and high toughess. In these applications, they are often subjected to localized heat damage due to various sources. In order to ensure their reliability, it is important to predict their residual properties using nondestructive evaluation thchniques. Fabric fiber composite specimens were manufactured with six layers of the glass-fiber prepreg and the carbon-fiber prepreg, respectively. The specimens were subjected to a localized heat damage using a heated copper tip with a diameter of 10mm at 35$0^{\circ}C$(CFRP) and 30$0^{\circ}C$(GFRP), respectively. The specimens were then subjected to tension tests while acoustic emission (AE) activities of specimens were collected. The AE activity of all specimens showed three types of distinct frequency regions. Those are matrix cracking, failure of the fiber/matrix interface and fiber breakage.

FRP로 보강된 RC보의 전단보강효과 비교연구 (A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP)

  • 심종성;김규선
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.101-111
    • /
    • 1998
  • 본 논문의 목적은 전단내력이 부족한 R/C보에 CFS(Carbon Fiber Sheets), CFRP(Carbon Fiber Reinforced Plastic), GFRP(Glass Fiber Reinforced Plastics)를 이용해 전단보강을 할 경우에 보의 역학적 거동특성을 규명하기 위한 것이다. 본 논문의 목적을 달성하기 위하여 총 19개의 시험체가 제작되었으며, 실험변수로는 전단스팬비, 보강재료, 보강방법, 보강간격 및 방향을 산정하였다. 본 논문의 실험결과, FRP를 이용해 전단내력이 부족한 R/C보에 보강을 하였을 경우 약 50~70%정도의 보강효과를 나타내었다. 또한 소성이론에 근거한 철근콘크리트보의 전단강도 예측모델을 개발하였고 실험치와의 비교를 통해 개발된 모델의 적합성을 검증하였다.

Application of AE for Fracture Behavior Evaluation of Carbon-fiber/SiC Reinforced Plastic Composites

  • Ryu, Yeong Rok;Kwon, Oh Heon
    • Composites Research
    • /
    • 제30권5호
    • /
    • pp.267-272
    • /
    • 2017
  • In this study, SiC powder was added to twill woven carbon fiber reinforced plastic (CFRP) composites to improve its mechanical properties. An acoustic emission (AE) frequency analysis method was suggested for the prediction of failure behaviors. Tensile tests were conducted and the fracture characteristics of each component of the SiC reinforced composite were evaluated using AE. The results showed that SiC powder improved the strength of twill woven CFRP composites and the fracture behavior of the SiC reinforced CFRP composite and its crack extension could be effectively evaluated on the basis of the specific AE frequency bands which are 100 to 228 kHz and 428 to 536 kHz upon the resin failure and 232 to 424 kHz due to addition of SiC powder and 576 to 864 kHz at the fiber breakage.

CFRP 복합재료의 혼합모드 I/II 층간파괴인성치에 관한 연구 (A Study on Mixed Mode I/II Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastic Composites)

  • 김형진;박명일;김재동;고성위
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.48-54
    • /
    • 2000
  • This paper describes the effect of molding pressure, specimen geometries for Mixed Mode I/II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using asymmetrical double cantilever beam(ADCB) specimen. The value of $G_{I/IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa. However it shows the highest value under 307 kPa molding pressure. The effect of $G_{I/IIC}$ due to the change of initial crack length of ADCB specimen was almost negligible in this study. It turns out that the condition for mix mode quasi-static crack growth in ADCB specimen is the ratio of the crack length to that of the specimen, i.e., ${\alpha}/L<0.4$.

  • PDF

충격속도에 따른 GFRP 및 AFRP의 충격흡수에너지 거동

  • 김철웅;송삼홍;오동준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.74-74
    • /
    • 2004
  • 탄소섬유강화 적층재(Carbon Fiber Reinforced Plastic, 이하 CFRP)는 강성도는 뛰어나지만 충격특성에는 취약한 단점이 있다. 따라서 충격저항과 충격에너지 흡수율이 상대적으로 우수한 유리섬유강화 적층재(Glass Fiber Reinforced Plastic, GFRP) 및 아라미드섬유강화 적층재(Aramid Fbier Reinforced Plastic, 이하 AFRP)를 CFRP 적용분야에 대체하고 점차적으로 피로특성을 개선시켜 나간다면 특성이 더욱 개선된 제품을 사용할 수 있을 것으로 판단된다.(중략)

  • PDF

탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구 (Tribological Characteristics of Carbon Fiber Reinforced Plastics by Surface modification)

  • 전승흥;양준호;오성모;이봉구
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.29-36
    • /
    • 2000
  • This investigation has been studied about friction and wear properties which were important problem, when carbon fiber reinforced plastic(CFRP) was used practically. Unidirection carbon fiber reinforced composites was fabricated with epoxy resin matrix and carbon fiber as a reinforced, and its surface was modified by the ion-assisted reaction. And then we tested the their friction and wear properties according to the ion-irradiation. when the amount of ion-irradiation was 1${\times}$10l6$\^$16/ ions/$\textrm{cm}^2$, the friction coefficient values were about 0.1, where as, the friction coefficient values of non-treatment composites were about 0.16. The former was the stablest in wear mode. We know that ion-irradiation was not proportioned to the friction coefficient, so we found the optimal conditions of the friction and wear according to the ion-irradiation.

  • PDF

철도차량용 폐 복합소재에서의 탄소섬유 회수 (The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites for Train Body)

  • 이석호;이철규;김용기;김정석;주창식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.406-415
    • /
    • 2008
  • Recently, the amount of thermosetting plastic wastes have increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy composites, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that recovers carbon fibers from carbon fiber reinforced epoxy composites for train body was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

  • PDF