• Title/Summary/Keyword: carbon fabric

Search Result 236, Processing Time 0.026 seconds

Mixed Mode Interlaminar Fracture Behaviors of Carbon Fabric/Epoxy Composites (탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴 거동)

  • Yoon, Sung-Ho;Heo, Kwang-Soo;Oh, Jin-Oh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • Mixed mode interlaminar fracture behaviors of carbon fabric/epoxy composites were investigated through MMF (Mixed Mode Flexural) test by varying mixed mode ratio ranging from 20% to 90%. Mixed mode interlaminar fracture criteria based on NL point and 5% offset point were also suggested in order to predict mixed mode interlaminar fracture behaviors. Fracture surfaces and crack propagating behaviors were examined through a travelling scope and a scanning electron microscope. According to the results, mixed mode interlaminar fracture behaviors can be predicted by mixed mode interlaminar fracture criterion with m=1.5 and n=0.5 on the basis of NL point or mixed mode interlaminar fracture criterion with m=2 and n=3 on the basis of 5% offset point. Fracture surfaces and crack propagating behaviors are sensitive to mixed mode ratios. MMF test can be successfully applicable in evaluating mixed mode interlaminar fracture toughness of carbon fabric/epoxy composites.

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • The Korean Fashion and Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.

Bias Extension and Biaxial Tests for Carbon Dry Fabrics (탄소섬유 건직물의 일방향 편향 인장실험과 이축 인장실험)

  • 장승환;전성식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.99-102
    • /
    • 2003
  • This paper aims to observe the micro-mechanical behaviour of tow geometry during deformation of dry woven carbon-fiber fabric. With the increment of shear angle fabric experiences 'lock-up'phenomenon. In this paper, deformation of micro-mechanical parameters such as tow interval, change in tow amplitude and wavelength are investigated. To observe the micro-deformation of the fabric structure, appropriate specimens from bias extension and biaxial tests are sectioned and observed under the microscope. It was found that different loading conditions cause geometric deferences in the tow architecture.

  • PDF

A Study on Sliding Shear(Mode II) Delamination of Woven Fabric composites for Carbody Structure (차체 구조용 섬유직물 복합재의 평면 전단(mode II) 층간분리 거동에 대한 시험적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.557-563
    • /
    • 2010
  • Mode II interlaminar fracture toughness was measured and fractured surfaces were observed of carbon/epoxy and glass/epoxy woven fabric composites for carbody structure. Woven fabric carbon/epoxy and glass/epoxy composites that made with prepreg and epoxy resin(RS1222) are used in carbody structure of Korean tilting train(TTX) and low floor bus. ENF(End Notched Flexure) specimens having $120mm{\times}20m{\times}5mm$ shape and 35mm initial crack were made with each composites and three point bending tests according to ASTM D790 were conducted for these specimens. Crack lengths in tests were recorded using optical microscope and digital camcorder. NL(Non Linear), 5% offset and Max. load points in load -displacement curves were checked and mode II interlaminar fracture toughness of these points were calculated and compared. Fractured surfaces of specimens were observed using optical microscope and mode II delamination behavior of each composites was discussed.

  • PDF

Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Expocy Composite for Tilting Train Carbody (틸팅열차 차체용 탄소섬유직물/에폭시 복합재의 모우드 I 층간파괴인성 평가)

  • Heo KWang-Su;Kim Jeong-Seok;Yoon Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.573-580
    • /
    • 2005
  • Model I interlaminar fracture behaviors of the carbon/epoxy composite, one of the candidate composites for a tilting train carbody, were investigate by the use of DCB(Double cantilever beam) specimens. These specimens were made of CF3327 plain woven fabric with epoxy resin, and an artificial starter delamination was fabricated by inserting Teflon film with the thickness of $12.5{\mu}m$ of $25.0{\mu}m$ at the one end of the specimen. Mode I interlaminar fracture toughness was evaluated for the specimens with the different thickness of an inserter. Also delamination propagating behaviors and interlaminar fracture surface were examined through an ooptical travelling scope and a scanning electron microscope. We found that abruptly unstable crack propagation called as stick-slip phenomena was observed. In addition, interlaminar fracture behaviors were affected on the location and the morphology of a crack tip as well as an interface region.

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

A Study on the Effents of High Temperature Heat Treatment on the Physical and Mechanical Properities of Carbon Fiber and Carbon Composites (탄소섬유 및 탄소복합재의 물리적/기계적 특성에 대한 고온열처리의 영향 연구)

  • Kim, Dong-Gyu;Ha, Heon-Seung;Park, In-Seo;Im, Yeon-Su;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.287-294
    • /
    • 1994
  • PAN-based carbon fiber roving and fabric were heat treated at the temperature of $2170^{\circ}C$. Using non-heat treated and heat treated fabric, greenbodies of CFRP and GFRP were manufactured in the Autoclave. After the analysis of heat treated and non-heat treated carbon fiber roving and two types of greenbodies, the variations of physical and mechanical properties of carbon fibers and greenbodies with heat treatment were studied. Observing the cross-section of carbon fiber with SEM, we knew the diameter of carbon fiber was decreased from 6.8gm to 6.4p1. The results of TGA showed that the oxidation resistence was enhanced after heat treatment. The tensile strength of carbon fiber was decreased from (3.11$\pm 0.32)\times 10^3$ MPa to (1.87$\pm 0.26)\times 10^3$MPa, but tensile modulus was increased from (1.94$\pm 0.06)\times 10^5$ MPa to (2.02$\pm 0.11)\times 10^5$MPa after heat treatment. The interlaminar shear strengths of CFRP and GFRP were 148.8$\pm$1.6Mpa and 82.2$\pm$1.1Mpa, respectively. Torch test showed that CFRP was abraded smoothly but GFRP was delaminated.

  • PDF

Influence of Layer Thickness on the Mechanical Properties in the Laminated Composites (적층형 복합재료에서 Unit Ply의 두께가 기계적 성질에 미치는 영향)

  • Mun, Chang-Gwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.979-987
    • /
    • 1995
  • This study has been investigated the Influence of layer thickness on the mechanical properties of cross laminated carbon fiber/epoxy composites. And also the difference of mechanical properties between cross laminated composites of unidirectional prepreg and fabric prepreg has been investigated. Experimental results are showed that the Interlamina Shear Strength(ILSS) of cross laminated carbon fiber/epoxy composites decreased with increasing thickness of unit ply and the decree of delamination in the laminated composites increased as ILSS decreased. Fracture toughness and impact values were found to increase as delamination occurs to some extent in the laminated composites. It Is also shown thats mechanical properties of cross laminates from unidirectional prepreg were better than those of cross laminates from fabric prepreg.

  • PDF

Study on the durability of fiber reinforced plastic by moisture aborsoption (흡수에 의한 FRP의 내구성에 관한 연구)

  • 문창권;구자삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion (카본 블렉을 함유한 복합재 적층판의 유전율)

  • 김진봉;김태욱
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2003
  • This paper presents a study on the permittivities of the I-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurements were performed at the frequency band of 5 GHz∼18 GHz. The results showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme is proposed to obtain a mixing law for the estimation of the complex permittivities of the composite laminates as a function of concentration of carbon black. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme. The experimental values of the complex permittivities of the composites were compared to those calculated.