• Title/Summary/Keyword: carbon emission efficiency

Search Result 258, Processing Time 0.03 seconds

Recent improvements in display image qualities of CNT FEDs

  • Chi, Eung-Joon;Chang, Cheol-Hyeon;Lee, Chun-Gyoo;Choe, Deok-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.137-140
    • /
    • 2006
  • The prototype of the field emission display with carbon nanotube emitter is developed in this study. To improve the brightness and color gamut of the prototype, new phosphor material, $SrGa_2S_4:Eu$, is adopted instead of conventional CRT-green phosphor. By replacing the green phosphor, the prototype shows significant improvements in the brightness and color gamut. At the anode voltage of 7 kV and the anode current of $2{\sim}3\;{\mu}A/cm^2$ the brightness is higher than $600\;cd/m^2$. The luminous efficiency of the prototype is about 7.7 lm/Watt.

  • PDF

A Study on a Efficiency of Glazing for Energy Reduction of Curtain Wall Buildings (유리성능에 따른 커튼월건물의 에너지절약효과에 대한 연구 -표준건물 에너지소비와의 비교분석을 중심으로-)

  • Lee, Yong-Jun;Jung, Kwang-Sub;Oh, Bo-Hwan;Kang, Jae-Sik;Choi, Kyoung-Suk;Lee, Deuk-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.114-119
    • /
    • 2009
  • This study has been conducted to describe the establishment of national measures to reduce world energy consumption and $CO_2$ Emission. Particularly, Reductions in energy consumption from building operation is the most important part to achieve these national objectives. Element to evaluate the quantitative effects of these systems by having rationalized regulation and operation is essential, when planning for building energy reduction design. USGBC(US Green Building Council) have operated sustainable assessment method called LEED, which introduces baseline performance and evaluation direction for building simulation techniques. This research analyzed Quantitative assessments of the building energy consumption and analyzed baseline figures to provide comparative analysis with standard building settings.

  • PDF

Study of Enhancing Dye Affinity of Fabric using Microwave

  • Kim, Ji-Hyun;Choi, In-Ryu
    • The International Journal of Costume Culture
    • /
    • v.13 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Of all the ways that energy is consumed within textile industry, few are as high energy-expending as dyeing process. The energy consumption in dyeing process amounts to 77% of total fuel consumption, 54% of total electricity use. A technical development in terms of efficient saving energy and time as well is required in the process of dyeing textiles. Recently, dyeing experts are investigating new technologies can conserve energy grafting into microwaves, radio waves, infrared lights, etc. Dyeing industry in Korea, however, the research related to energy conservation has been rarely conducted. Accordingly, this study aims to examine the possibility where especially microwaves could be applied to reduce the energy use and enhance dyeing process skill. This study performs the experiment in which microwave is employed as heating condition in dyeing and figures out as color yield being promoted, bathochromic effect would be achieved. Applying microwaves in dyeing process is expected to lower the carbon emission, energy and time wasted, ultimately exalt economic efficiency.

  • PDF

A Study on the Mixture Formation and Combustion Characteristics in Lean Burn Engine (희박연소기관의 혼합기형성 및 연소특성에 관한 연구)

  • 이창식;서영호;조행묵;김현정
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.80-86
    • /
    • 1996
  • In order to decrease fuel comsumption rate and emissions, lean burn engine which has equipped swirl control valve, is investigated experimentally on the test bench. Single cylinder engine was used to test the combustion and emission performance with 4 kinds of swirl valve. Decrease in the carbon monoxide, hyerocarbon and specific fuel consumption was shown at the lean condition, which means that a good choice of swirl valve on the given intake port geometry can be used to increase the combustion efficiency and lean limit.

  • PDF

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Home Energy Management System for Residential Customer: Present Status and Limitation

  • Lee, Sunguk;Park, Byungjoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 2018
  • As environmental pollution has become worse green technologies to replace or reduce consumption of fossil fuel get spotlight from government, industry and academia globally. It is reported that 40% of carbon dioxide emission is caused by electricity power generation. And 37% of end user electricity power is used by residential costumer in US. Smart Grid is considered as one of promising technology to alleviate severe environmental problem. In residential environment, Home Energy Management System (HEMS) can play a key role for green smart home. The HEMS can give several benefits like aslowering electric utility bill, improvement of efficiency of electric power consumption and integration of generator using renewable energy resources. However just limited functions of HEMS can be used for residential customer in real life because of lack of smart function in home appliances and optimal managing software for HEMS. This study provides comprehensive analysis for Home Energy Management System for residential customer. Simple HEMS system with real products on the market are explained and limitation of current HEMS are also discussed.

An Analysis of Effects through Improved Insulation Performance for High-Density Residential Area on West High East Low Type (서고동저형 경사지 주거 밀집지역의 단열성능 개선 효과분석)

  • Lee, Seong-Hwa;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • The purpose of this study is propose eco-friendly remodeling while protecting the living environment of existing residents and preserving the living in pleasant by considering the characteristic of high density sloped residential area. And then, the optimum insulation condition is analyzed based on the energy efficiency, economic analysis and environmental effect. It will be possible as the basic information for remodeling of each housing in sloped area. The energy demanding, cost and the carbon emission reduction is analyzed with the residential area in Seo-gu, Busan by eco-remodelling.

The Evaluation of Catalytic Trap Oxidizer on a City Bus (市內버스 煤煙防止를 위한 觸媒酸化濾過裝置의 實用化 硏究)

  • Cho, Kang-Rae;Kim, Yang-Kyun;Eom, Myung-Do;Kim, Chong-Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.79-87
    • /
    • 1989
  • In order to reduce the smoke emission from the in-service city bus, this study was evaluated the particulate reduction efficiency and regeneration ability of the catalitic trap oxidizer (CTO) on the city bus (D0846HM engine) equipped with it. Before the on-road CTO test, the laboratory test of CTO on engine test-bench was performed. Reduction efficiencies of smokes and particulates were 54 and 45%, and those of gaseous pollutants such as carbon monoxide (CO) and hydrocarbons (HC) were 90 and 60%. In order to evaluate the regeneration ability of the CTO by the catalytic oxidation of trapped particulate, field test was performed on the in-service road. The regeneration temperature was 350$^\circ$ which was same with the exhaust temperature of city bus.

  • PDF

Energy Efficient Software Development Techniques for Cloud based Applications

  • Aeshah A. Alsayyah;Shakeel Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.119-130
    • /
    • 2023
  • Worldwide organizations use the benefits offered by Cloud Computing (CC) to store data, software and programs. While running hugely complicated and sophisticated software on cloud requires more energy that causes global warming and affects environment. Most of the time energy consumption is wasted and it is required to explore opportunities to reduce emission of carbon in CC environment to save energy. Many improvements can be done in regard to energy efficiency from the software perspective by considering and paying attention on the energy consumption aspects of software's that run on cloud infrastructure. The aim of the current research is to propose a framework with an additional phase called parameterized development phase to be incorporated along with the traditional Software Development Life cycle (SDLC) where the developers need to consider the suggested techniques during software implementation to utilize low energy for running software on the cloud and contribute in green computing. Experiments have been carried out and the results prove that the suggested techniques and methods has enabled in achieving energy consumption.

An Optimization of 11kW Gas Engine for Distributed Energy Source Modified from Gasoline Engine (가솔린엔진을 개조한 분산전원용 11kW급 천연가스엔진의 성능 최적화)

  • Lee Youngae;Pyo Youngdug;Kim Gangchul;Oh Sidoek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.96-101
    • /
    • 2005
  • Cogeneration is an energy conversion process, where electricity and useful heat are produced simultaneously in one process. Also, carbon dioxide emissions can be reduced as well. The cogeneration process may be based on the use of steam, gas turbines or combustion engines. However, there have been few models with an output of less than 100 kilowatt. In the present study, a spark ignited gas engine with generation output of 10 kilowatts was developed for micro cogeneration package. The gas engine shows 29.2$\%$ of thermal efficiency under Stoichiometric combustion and 33.6$\%$ of thermal efficiency under lean combustion. NOx emission shows less than 10ppm at 13$\%$ oxygen under stoichiometric combustion and about 100ppm at 13$\%$ oxygen under lean combustion.