• 제목/요약/키워드: carbon emission amount

검색결과 282건 처리시간 0.027초

탄소흡수원을 고려한 개발사업 환경영향평가 방안(I) - 태양광발전소 건설사업 사례를 중심으로 - (Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(I) - Focused on a Solar Power Plant Development Project -)

  • 황상일;박선환
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.625-631
    • /
    • 2010
  • The objective of this work was to investigate how carbon sink and sequestration of vegetation and soil in the development project area can impact the land use plan, in addition to carbon emission capacity of the development project when we conduct environmental impact assessment. Especially, we did this work for a development project of solar power plant which would be constructed in forest area. Through this work, we found that 1) the amount of carbon sink and sequestration largely decreased due to reduction of the green area, 2) in terms of carbon sink and sequestration, conservation of natural green area is better than construction of newly vegetated area, 3) biochar application into soil can become an alternative for increase of carbon sink, and 4) even though a solar power production does hugely reduce carbon emissions and offset the carbon sink and sequestration capacity from the forest, it is necessary to consider the public value of the forest(reduction of heat island, habitat etc.) in siting for development area.

Comparison of Methane Emissions by Rice Ecotype in Paddy Soil

  • Tae Hee Kim;Jisu Choi;Seo Young Oh;Seong Hwan Oh
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.145-145
    • /
    • 2022
  • South Korea greenhouse gas emissions have increased year by year, resulting in a total emission of 727.6 million tons of CO2 eq in 2018, a 2.5% increase compared to 2017. Among them, the agricultural sector emitted 21.2 million tons of CO2 eq., accounting for 2.9% of the total. Among the greenhouse gases emitted from the agricultural sector, a particularly problematic is methane gas emitted from rice paddies. Methane is one of the important greenhouse gases with a global warming potential (GWP) that is about 21 times higher than that of carbon dioxide due to its high infrared absorption capacity despite its relatively short remaining atmospheric period. Since the pattern of methane generation varies depending on the rice variety and ecological type, research related to this is necessary for accurate emission calculation and development of reduction technology. Accordingly, a study was conducted to find out the changes in greenhouse gas emission according to rice varieties and ecology types. As for the rice eco-type cultivar, early maturing cultivar (Haedamssal) and medium-late rice cultivar (Saeilmi) were used. Haedamssal was transplanted on May 25 and June 25, and Saeilmi was transplanted on June 10 and June 25. The amount of methane generated according to the growing day showed a tendency to increase as the planting period was earlier. The difference between varieties was that Haedamssal showed higher methane production than Saeilmi. The total CH4 flux in the saeilmi was 18.7 kg·h-1(Jun 10 transplanting), 12.4 kg·h-1(Jun 25 transplanting) during rice cultivation. Lower methane emission was observed in Saeilmi than in Haedam rice. In addition, the earlier the planting period, the higher the methane emission. This study is the result of the first year of research, and it is planned to investigate the amount of greenhouse gas emission between double cropping and single cropping using wheat cultivation after harvest for each ecological type.

  • PDF

목재연료 사용에 따른 블랙카본의 배출특성 (Emission Characteristics of Black Carbons Generated by Wood Combustion through a Stove)

  • 이지영;최봉석;사재환;전의찬;최상진;박성규
    • 한국기후변화학회지
    • /
    • 제4권1호
    • /
    • pp.41-49
    • /
    • 2013
  • 기후변화를 유발하는 원인물질로는 주로 화석연료의 연소에 의해 발생하는 '온실가스'가 대표적이었으나, 최근 연구를 통해 블랙카본 또한 기후변화에 기여하는 것으로 알려지고 있다. 주로 숯가마, 화목난로, 폐기물 노천소각 등 생물성 물질의 불완전연소에 의해 발생하는 블랙카본은 눈과 얼음의 표면에 붙어 알베도를 감소시키고, 태양복사에너지 흡수율을 증가시켜 눈과 얼음이 녹는 속도를 가속화 한다. 그러나, 바이오매스 연소로 발생하는 블랙카본의 배출 특성은 아직 정확하게 밝혀진 바가 없다. 본 연구에서는 이러한 블랙카본의 배출 특성을 살펴보기 위하여 화목난로를 대상으로 연소실험을 진행하였다. 연소 실험 결과, 블랙카본은 연소 온도가 낮고, 연소용 공기 공급량이 적은 조건에서 더 많이 발생하는 것으로 나타났다. 또한, 블랙카본 배출계수는 벽난로에서 목재연료 A를 연소하였을 때가 1.01 g-BC/kg-Oak, 목재연료 B가 0.37 g-BC/kg-Oak, 목재연료 C가 0.29 g-BC/kg-Oak으로 산정되었고, 소형난로에서 목재연료 A를 연소하였을 때 0.25 g-BC/kg-Oak으로 산정되었다.

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권1호
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구 (The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends)

  • 김종호;박경훈;김경민;박경원;정태용;이영주;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.

열병합발전을 이용한 집단에너지사업의 온실가스 감축효과 (Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation)

  • 신경아;동종인;강재성;임용훈;김다혜
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

고온형 고분자 전해질막 연료전지(HT-PEMFC) 구동환경에 따른 탄소 담지체 부식 평가 (Effect of operating conditions on carbon corrosion in High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs))

  • 이진희;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • The influence of potential and humidity on the electrochemical carbon corrosion in high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs) is investigated by measuring $CO_2$ emission at different potentials for 30 min using on-line mass spectrometry. These results are compared with low tempterature polymer electrolyte membrane fuel cells(LT-PEMFCs) operated at lower temperature and higher humidity condition. Although the HT-PEMFC is operated at non humidified condition, the emitted $CO_2$ in the condition of HT-PEMFC is more than LT-PEMFC at the same potential in carbon corrosion test. Thus, carbon corrosion shows a stronger positive correlation with the cell temperature. In addition, the presence of a little amount of water activate electrochemical carbon corrosion considerably in HT-PEMFC. With increased carbon corrosion, changes in fuel cell electrochemical characteristics become more noticeable and thereby indicate that such corrosion considerably affects fuel cell durability.

  • PDF

흡수율과 재생율을 동시 고려한 천연가스복합발전 공정 연계 이산화탄소 포집 공정의 재생 조건 최적화 (Regenerating Condition Optimization of NGCC Combined Carbon Capture Process Simultaneously Considering Absorption and Regeneration Rates)

  • 최정훈;주영환
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.368-377
    • /
    • 2023
  • 천연가스복합발전 공정은 일반 석탄 화력발전 공정에 비해 이산화탄소 배출량이 낮아 최근에 발전 플랜트로서 많은 관심을 받고 있다. 그럼에도 불구하고 이산화탄소 배출을 완전히 억제하기는 어려우므로 이산화탄소 포집공정이 필요하며 본 연구에서는 천연가스복합발전 플랜트에서 발생하는 배기가스 내 낮은 이산화탄소 농도를 고려해 포집공정을 구성하고 운전조건을 최적화하는 연구를 수행하였다. 최적화 연구를 위해 상용 시뮬레이션 프로그램으로 천연가스복합발전 공정과 습식 이산화탄소 포집공정이 결합된 전체 공정을 모델링 하였으며, 이를 이용해 다양한 조건에서 이산화탄소 흡수율, 흡수제 재생율, 천연가스복합발전 공정 내 전력 손실율을 종합적으로 고려한 최적 운전조건을 도출하였다. 특히 본 연구에서는 기존에 이산화탄소 포집공정에서 포집된 이산화탄소 톤당 에너지 소모량만을 주요 지표로 검토하던 것과 달리, 천연가스복합발전 공정 내 스팀 사용으로 인한 발전효율 저감, 운전조건 변화에 따른 이산화탄소 흡수율 및 흡수제 재생율 변화의 측면도 함께 고려하여 공정 전반의 성능을 종합적으로 고려할 수 있도록 하였다. 결론적으로 재생탑 재비기 온도가 120 ℃가 되었을 때 가장 좋은 결과를 보이는 것으로 나타났으며, 그 원인을 분석하였다.

MTBE 가솔린기관의 배기가스 특성에 관한 연구 (Emission Characteristics for the MTBE Gasoline Engine)

  • 노병준;이삼구;김규철
    • 한국추진공학회지
    • /
    • 제5권2호
    • /
    • pp.32-37
    • /
    • 2001
  • 본 논문에서는 현재 시판되고 있는 주요 정유회사의 MTBE 가솔린을 이용하여 차량 배출 배기가스를 측정하였다. 배출 가스량은 차량 동력계상에 실제차량을 탑재하여 시험차량의 배기관에서 배출된 배출가스를 포집 하였으며, 우리나라의 공인배출가스 시험방법인 CVS-75 모드를 추적 주행하여 측정 하였다. CVS-75 모드는 cold start cycle, hot stabilized cycle 및 hot start cycle로 구성되며, 본 실험에서 분석한 배출가스는 일산화탄소, 질소산화물 및 탄화수소 등이다. 실험결과 배출 가스의 양에 있어서 근소한 차이만 보이고 있음을 알 수 있었다.

  • PDF

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • 정혁;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF