• Title/Summary/Keyword: carbon dioxide method

Search Result 683, Processing Time 0.025 seconds

Synthesis of Spinel Phase ${LiMn_2}{O_4}$ and its Activation by Hydrogen Reduction (스피넬상 ${LiMn_2}{O_4}$의 합성과 수소환원에 의한 활성화)

  • 이동석;류대선;임병오;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.564-568
    • /
    • 2000
  • Spinel LiMn2O4 catalyst with submicron and single phase particles was synthesized at 48$0^{\circ}C$ for 12 hr in air by a sol-gel method. The spinel LiMn2O4 was deoxidized by hydrogen at various temperatures. Effects of physiochemical properties of the catalyst reduced by hydrogen were examined with X-ray diffractometer, thermogravimetric analysis and scanning electron microscope. The decomposition rate of carbon dioxide was measrued using the catalyst deosidized at 35$0^{\circ}C$.

  • PDF

Separation of EPA and DHA from Fatty Acid of Fish Oil by Supercritical Fluid Rectification (초임계유체 정류법에 의한 어유지방산으로부터 EPA와 DHA의 분리)

  • Kim, Jae-Duck;Lim, Jong-Sung;Lee, Youn-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.49-55
    • /
    • 1997
  • It was tested the possibility that EPA and DHA could be separated from fish oil fatty acid ethyl ester(FAEE) in the supercritical carbon dioxide rectification method. Experiments were carried out in the 1800mm tall and temperature gradient packed rectification column at the pressure of 100bar and carbon dioxide flow rate of 52.43NL/min. Experimental results showed that this method was useful to separate the FAEE by the relative volatility of the components. The maximum attainable concentration of EPA, DHA and both of them in product were 41%, 43% and 57% respectively in this rectification column using raw fish oil feed.

Thermal Performance Analysis of Circular Coil Type Internal Heat Exchanger for Transcritical $CO_2$ System (천임계 $CO_2$ 시스템용 코일형 내부 열교환기의 열성능 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.531-542
    • /
    • 2002
  • Transcritical$CO_2$ systems are under consideration for use as residential/mobile air conditioners. In these systems, an internal heat exchanger is usually adopted to improve both capacity and/or COP of the $CO_2$ system in lower operating pressure range of gas cooler. A program has been developed to analyse the performance of internal heat exchangers using the section-by-section method. The internal heat exchanger of coaxial configuration is first analyzed and fairly good agreements with the data are obtained, And then the internal heat exchanger of multiple circular coil configuration has been investigated. The results obtained from the parametric study provide the guidelines for the initial design and manufacturing concepts of the internal heat exchanger in transcritical $CO_2$ system. Further studies are necessary to develop the heat transfer correlations of carbon dioxide in the tubes to obtain more accurate results.

$Ni/\gamma -Al_2O_3$ Catalyst Prepared by Liquid Phase Oxidation for Carbon Dioxide Reforming of Methane

  • 정경수;조병율;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • Carbon dioxide reforming of methane on Ni/γ-Al2O3 catalyst was studied. A new 10 wt% Ni/γ-Al2O3 catalyst prepared by the liquid phase oxidation method (L10O) exhibited much higher activity as well as resistances to both sintering and coke formation during the reaction than the catalyst prepared by the conventional impregnation method (D10). The electrically strong attractive interaction between nickel and support during the liquid phase oxidation process and the resultant high nickel dispersion made the L10 have superior activity and stability to the D10. To elucidate the results, the experiments with nickel catalysts on the other supports as well as 7-AI203 were performed. The effect of sodium as a promoter was also studied.

Estimation in a Model for Determining the Amount of Carbon in Soil and Measurement of the Influences of the Specific Factors (농경지 토양탄소량 결정모형 추정 및 요인별 영향력 계측)

  • Suh, Jeong-Min;Cho, Jae-Hwan;Son, Beung-Gu;Kang, Jum-Soon;Hong, Chang-Oh;Kim, Woon-Won;Park, Jeong-Ho;Lim, Woo-Taik;Jin, Kyung-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1827-1833
    • /
    • 2014
  • This study has been carried out to present the valuation system of soil carbon sequestration potentials of soil in accordance with the new climate change scenarios(RCP). For that, by analyzing variation of soil carbon of the each type of agricultural land use, it aims to develop technology to increase the amount of carbon emissions and sequestration. Among the factors which affects the estimation of determining the soil carbon model and influence power after the measurement on soil organic carbon, under the center of a causal relationship between the explanatory variables this study were investigated. Chemical fertilizers (NPK) decreased with increasing the amount of soil organic carbon and as with the first experimental results, when cultivating rice than pepper, the fact that soil organic carbon content increased has been found out. The higher the carbon dioxide concentration, the higher the amount of organic carbon in the soil and this result is reliable under a 10% significance level. On the other hand, soil organic carbon, humus carbon and hot water extractable carbon has been found out that was not affected the soils depth, sames as the result of the first year. The higher concentration of carbon dioxide, the higher carbon content of humus and hot water extractable carbon content. According to IPCC 2006 Guidelines and the new climate change scenario RCP 4.5 and the measurement results of the total amount of soil organic carbon to the crops due to abnormal climate weather, 1% increase in atmospheric carbon dioxide concentration was found to be small when compared to the growing rate of increasing 0.01058% of organic carbon in the soil.

Characteristics of the Continuous Measurement and the Fuel Analysis for Emission Calculation of Carbon Dioxide in a Coal Fired Power Plant (석탄화력발전소 이산화탄소 배출량 산정을 위한 연료분석법과 연속측정법의 특성)

  • Choi, Hyun-Ho;Yoo, HoSeon
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • This study calculates carbon dioxide emissions using the fuel analysis and the continuous measurement from 500 MW-class coal-fired power plants and evaluates the characteristics of each method. The emissions calculation using fuel analysis was the lowest calculation among the emissions calculation methods. This is because of low net calorific value analysis. When using the low calorific coals, it is beneficial to utilize the fuel analysis. Also it showed the characteristics of the lower calculation emissions when used the as fired coals than the as received coals. However, the difference is negligible to less than 2%. As sample analysis personnel and equipment are limited in the present circumstances, it is also deemed appropriate to use the as received coals to fuel analysis. Continuous measurement showed somewhat higher emissions than the fuel analysis, and lower emissions than calculation method using domestic emission factors. Thus, if the calculated emission using fuel analysis increases with the coal type changes, it is beneficial to using modified flow rate measurement method.

  • PDF

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation (코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계)

  • Lee, Jongwon;Han, Myungwan;Kim, Beomsik
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.176-185
    • /
    • 2018
  • As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

A Study on the Impact of CO2 Immersion Test for Rubber Sealing Materials (고무 씰링 재료에 대한 CO2 침지 영향에 관한 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.26-32
    • /
    • 2014
  • CCS(Carbon Capture and Storage) which is technic to capture and storage the carbon-dioxide is the method that reduces the carbon-dioxide from the industries to prevent earth from the global warming. In order to apply to the practical site, it is inevitable to investigate the possibility of damage in the pipe or components by carbon-dioxide. In this paper, the immersion test is performed to estimate the suitability of the rubber which is used to seal or connect the pipelines because the rubber has not been validated. Also, the immersion test is carried out in a certain condition(pre- and supercritical state).

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.