• Title/Summary/Keyword: carbon chain

Search Result 403, Processing Time 0.028 seconds

Theoretical study on electrical behavior of carbon chain inserted single-walled carbon nanotubes compared with Pt doped one

  • Cui, Hao;Zhang, Xiaoxing;Xiao, Hanyan;Tang, Ju
    • Carbon letters
    • /
    • v.25
    • /
    • pp.55-59
    • /
    • 2018
  • Carbon chain inserted carbon nanotubes (CNTs) have been experimentally proven having undergone pronounced property change in terms of electrical conductivity compared with pure CNTs. This paper simulates the geometry of carbon chain inserted CNTs and analyzes the mechanism for conductivity change after insertion of carbon chain. The geometric simulation of Pt doped CNT was also implemented for comparison with the inserted one. The results indicate that both modification by Pt atom on the surface of CNT and addition of carbon chain in the channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations. All the calculations were obtained based on density functional theory method.

Electrical and transport properties of carbon chains encapsulated within CNT

  • KIM, Tae Hyung;KIM, Hu Sung;KIM, Yong-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.457-462
    • /
    • 2017
  • A linear carbon chain with pure sp hybridization has been intensively studied for the application of its intrinsic electrical properties to electronic devices. Owing to the high chemical reactivity derived from its unsaturated bond, encapsulation by carbon nanotubes (CNT) is provided as a promising method to stabilize the geometry of the linear carbon chain. Although the influence of CNT on the carbon chain has extensively been studied in terms of both electronic structure and geometries, the electron transport properties has not been discussed yet. In this regard, we provide the systematic atomic-scale analyses of the properties of the linear carbon chain within CNT based on a computational approach combining density-functional theory (DFT) and matrix green function (MGF) method. Based on the DFT calculations, the influence of CNT on electronic structures of the linear carbon chain is provided as well as its electrical origin. Via MGF calculations, we also identify the electron transport properties of the carbon chain - CNT complex.

  • PDF

Dielectrophoretic Alignment and Pearl Chain Formation of Single-Walled Carbon Nanotubes in Deuterium Oxide Solution

  • Lee, Dong Su;Park, Yung Woo
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.248-253
    • /
    • 2012
  • Dielectrophoretic filtering and alignment of single-walled carbon nanotubes (SWCNTs) were tested using deuterium oxide as a solvent. A solution of deuterium oxide-SWCNTs was dropped on top of a silicon chip and an ac electric field was applied between pre-defined electrodes. Deuterium oxide was found to be a better solvent than hydrogen oxide for the dielectrophoresis process with higher efficiency of filtering. This was demonstrated by comparing Raman spectra measured on the initial solution with those measured on the filtered solution. We found that the aligned nanotubes along the electric field were not deposited on the substrate but suspended in solution, forming chain-like structures along the field lines. This so-called pearl chain formation of CNTs was verified by electrical measurements through the aligned tubes. The solution was frozen in liquid nitrogen prior to the electrical measurements to maintain the chain formation. The current-voltage characteristics for the sample demonstrate the existence of conduction channels in the solution, which are associated with the SWCNT chain structures.

Formation Dynamics of Carbon Atomic Chain from Graphene by Electron Beam Irradiation

  • Park, Hyo Ju;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.126-127
    • /
    • 2018
  • Carbon has numerous allotropes and various crystalline forms with full dimensionalities such as diamond, graphite, fullerenes, and carbon nanotubes leading a wide range of applications. Since the emerge of graphene consisting of a single atomic layer of carbon atoms, a fabrication of all-carbon-based device with combination of one-, two-, and three-dimensional carbons has become a hot issue. Here, we introduce an ultimate one-dimensional carbon atomic chain. Carbon atomic chains were experimentally created by removing atoms from monolayer graphene sheet under electron beam inside transmission electron microscope (TEM). A series of TEM images demonstrate the dynamics of carbon atomic chains over time from the formation, transformation, and then breakage.

Effect of Substituent of Chain Transfer agent in the Free Radical Polymerization (자유 라디칼 중합반응에서 사슬이동제의 치환기 효과)

  • Chung, I.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Carbon tetrachloride is very reactive chain transfer agent due to the resonance stability of the trichlorocarbon radicals after breaking of C-Cl bond. Effect of benzylic radical comparing to trichlorocarbon radicals in the chain tranrfer reactions was investigated. From the structural point of view, cumyl chloride is a good candidate because it has the C-Cl bond with benzylic radicals after displacement of C-Ci bond. The reactivity of free radical polymerization of styrene in the presence of cumyl chloride was compared with that of carbon tetrachloride by calculating chain transfer constants. Results show that the cumyl chloride acts as a stronger chain transfer agent than carbon tetrachloride. The calculated chain transfer constant of cumyl chloride shows higher value (0.0463) than that of carbon tetrachloride (0.0011) in the styrene polymerization. High reactivity of cumyl chloride comparing to that of carbon tetrachloride is probably due to the higher resonance stability or benzylic radical than that or trichlorocarbon radicals after breaking of C-Cl bond. Monte Carlo simulation method is applied for characterizing the validity of kinetic constants according to the ratio of chain transfer agent to monomer.

The Carbon Content and Chain Embodied in Exports of Korea with Major Trading Partners : The Multi-Regional Input-Output Analysis (한국의 수출에 함유된 국내외 탄소배출 비중과 탄소사슬(carbon chain): 주요 교역상대국들을 중심으로 한 다지역 산업연관분석)

  • Shin, Dong Cheon;Lee, Hyeok;Kim, Yong Kyun
    • Environmental and Resource Economics Review
    • /
    • v.24 no.1
    • /
    • pp.141-164
    • /
    • 2015
  • The concept of consumption-based greenhouse gas (GHG) inventory is directly related with the carbon content of international trade. Along the lines of the consumption-based GHG inventory, we investigate domestic and foreign carbon contents embodied in sectoral exports of Korea. In addition to the analysis of carbon content of exports, it is investigated how much share of responsibility for carbon emissions of Korea belongs to each major trading partner of Korea. We also compute the carbon intensities of Korean exports in carbon chain with other trading partners and find some characteristics revealed in Korea's carbon emissions embodied in its exports.

Single Manufacturer and Multiple Retailers Multi-Product Inventory Model under Cap-and-Trade Mechanism (배출권거래제 하에서 단일 제조업자-다소매업자의 공급사슬에서 다품목의 재고모형)

  • Kim, Dae-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.158-166
    • /
    • 2019
  • In pursuing carbon emission reduction efforts, companies have focused for the most part on reducing emissions due to the more efficient equipment and facilities. However they overlook a significant source of carbon emissions, one that is driven by operational policies. Currently companies are looking for solutions to reduce carbon emissions associated with their operations. Operational adjustments, such as modifications in order quantities could an effective way in reducing carbon emissions in the supply chain. Also, Cap-and-Trade mechanism is generally accepted as on of the most effective market-based mechanism to reduce carbon emissions. In this paper, we investigate a supply chain with single manufacturer and multiple retailers multi-product inventory model under the cap-and-trade system incorporating the carbon emissions caused by transportation and warehousing activities. Also, we provide an iterative solution algorithm and derive the common order interval and the number of intervals for each product. We show by numerical example that the inventory model incorporating cap & trade mechanism can reduce total cost and carbon emissions compared to the classical inventory model. Using the numerical examples, we also investigates different carbon price on the performance of the inventory model.

Odd-even Effects on the Surface Anchoring Strength and the Pretilt Angle Generation in NLC on Rubbed Polythiophene Surfaces with Alkyl Chain Lengths

  • Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • We have investigated that the high pretilt angle of the NLC, 4-n-pentyl-4-cyanobiphenyl (5CB), was observed on rubbed polythiophene (PTP) surfaces with alkyl chains with more than 10 carbon atoms; it is attributed to the surface-excluded volume effect by the alkyl chain lengths between the LCs and the PTP surfaces. Next, we investigated that the odd-even effect of the polar anchoring strength in 5CB on rubbed PTP surfaces with alkyl chain lengths has been successfully evaluated. The anchoring strength of 5CB for rubbed PTP surfaces with odd-number is weak compared with even-number up to the 6 carbon atoms in the alkyl chain; however, odd-number is strong compared with even-number above 7 carbon atoms. The weak anchoring strength of 5CB is approximately $1\times10^{-3} (J/m^2$) on rubbed PTP surface with 7 carbon atoms; it is relatively strong anchoring strength. Consequently, we conclude that the odd-even effects of the polar anchoring strength in NLCs are strongly related to the characteristics of the polymer and observed clearly for short alkyl chain lengths.

  • PDF

Magnetic Properties of Carbon Chains Doped with 4d Transition Metals

  • Jang, Y.R.;Lee, J.I.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.7-10
    • /
    • 2008
  • The structural and magnetic properties of functionalized carbon chains doped with 4d transition metals, such as Ru, Rh, and Pd, were investigated using the full-potential linearized augmented plane wave (FLAPW) method. The carbon nanowire doped with Ru exhibited a ferromagnetic ground state with a sizable magnetic moment, while those doped with Rh and Pd had nonmagnetic ground states. For the Ru-doped chain, the density of states at the Fermi level showed large spin polarization, which suggests that the doped nanowire could be used for spintronic applications.

Alignment effects of the nematic liquid crystal on polythiophene Surfaces (Polythiophene막을 이용한 네마틱액정의 배향효과)

  • 서대식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.127-129
    • /
    • 1997
  • The high pretilt angles in nematic liquid crystals (NLCs) have been generated on robbed polythiophene (PTP) surfaces with alkyl chain lengths. The pretilt angle of the NLC was observed on unidirectionally rubbed PTP surfaces with alkyl chains with more than 9 carbon atoms. We obtained the Pretilt angle of 15~40$^{\circ}$ on rubbed PTP surfaces with 10 carbon atoms in the a1ky1 chain. Also, the pretilt angles of 65~80$^{\circ}$ of NLC were obtained on rubbed PTP surfaces with 11 and 12 carbon atoms in the alkyl chain. We suggest that this high pretilt angle generation in NLC is due to the surface-excluded volume effect by the alkyl chain lengths between. the LCs and the PTP surfaces. Finally, we conclude the odd-even effect on rubbed PTP surfaces is clearly contributed to the pretilt angle generation.

  • PDF